cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258786 Numbers n whose sum of anti-divisors is a permutation of their digits.

Original entry on oeis.org

5, 8, 41, 56, 64, 358, 614, 946, 1092, 1382, 1683, 2430, 2683, 2734, 2834, 2945, 3045, 3067, 3602, 4056, 4286, 5186, 5784, 6874, 7251, 8104, 8546, 9264, 12881, 14028, 14384, 15258, 17386, 21103, 22044, 23331, 24434, 24603, 25346, 26420, 26822, 26845, 27024, 27232
Offset: 1

Views

Author

Paolo P. Lava, Jun 10 2015

Keywords

Comments

A073930 is a subset of this sequence.

Examples

			Anti-divisors of 5 are 2, 3 whose sum is 5.
Anti-divisors of 41 are 2, 3, 9, 27 whose sum is 41.
Anti-divisors of 64 are 3, 43 whose sum is 46 that is a permutation of the digit of 64.
		

Crossrefs

Programs

  • Maple
    with(numtheory):P:=proc(q) local a,b,j,k,ok,n,p;
    for n from 1 to q do k:=0; j:=n;
    while j mod 2 <> 1 do k:=k+1; j:=j/2; od;
    a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
    if ilog10(n)=ilog10(a) then j:=sort(convert(n,base,10)); a:=sort(convert(a,base,10)); ok:=1;
    for k from 1 to nops(a) do if j[k]<>a[k] then ok:=0; break;
    fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^9);
  • Mathematica
    ad[n_] := Cases[Range[2, n - 1], ?(Abs[Mod[n, #] - #/2] < 1 &)]; Select[Range@ 5000, SameQ[DigitCount@ #, DigitCount[Total[ad@ #]]] &] (* _Michael De Vlieger, Jun 10 2015 *)
  • Python
    from sympy.ntheory.factor_ import antidivisors
    A258786_list = [n for n in range(1,10**5) if sorted(str(n)) == sorted(str(sum(antidivisors(n))))] # Chai Wah Wu, Jun 11 2015