cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258813 Numbers k with the property that it is possible to write the base 2 expansion of k as concat(a_2,b_2), with a_2>0 and b_2>0 such that, converting a_2 and b_2 to base 10 as a and b, we have sigma(a) + sigma (b) = sigma(k) - k.

Original entry on oeis.org

9, 15, 27, 39, 51, 77, 143, 207, 329, 377, 473, 611, 903, 1241, 1243, 1273, 1437, 1591, 2117, 2303, 2975, 4189, 8401, 8657, 11993, 13849, 15611, 16771, 18239, 18599, 19359, 25331, 28877, 37291, 41747, 41807, 61549, 67037, 72601, 82169, 83411, 83711, 87449, 99329
Offset: 1

Views

Author

Paolo P. Lava, Jun 11 2015

Keywords

Examples

			9 in base 2 is 1001. If we take 1001 = concat(10,01) then 10 and 01 converted to base 10 are 2 and 1. Finally sigma(2) + sigma(1) = sigma(9) - 9 = 4.
180953 in base 2 is 101100001011011001. If we take 101100001011011001 = concat(101100001011,011001) then 101100001011 and 011001 converted to base 10 are 2827 and 25. Finally sigma(2827) + sigma(25) = sigma(180953) - 180953 = 3127.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,j,k,n;
    for n from 1 to q do c:=convert(n,binary,decimal);
    j:=0; for k from 1 to ilog10(c) do
    a:=convert(trunc(c/10^k),decimal,binary);
    b:=convert((c mod 10^k),decimal,binary);
    if a*b>0 then if sigma(a)+sigma(b)=sigma(n)-n then print(n);
    break; fi; fi; od; od; end: P(10^9);
  • PARI
    isok(n) = {b = binary(n); if (#b > 1, for (k=1, #b-1, vba = Vecrev(vector(k, i, b[i])); vbb = Vecrev(vector(#b-k, i, b[k+i])); da = sum(i=1, #vba, vba[i]*2^(i-1)); db = sum(i=1, #vbb, vbb[i]*2^(i-1)); if (da && db && (sigma(da)+sigma(db) == sigma(n)-n), return(1));););} \\ Michel Marcus, Jun 13 2015