A258815 Decimal expansion of the Dirichlet beta function of 8.
9, 9, 9, 8, 4, 9, 9, 9, 0, 2, 4, 6, 8, 2, 9, 6, 5, 6, 3, 3, 8, 0, 6, 7, 0, 5, 9, 2, 4, 0, 4, 6, 3, 7, 8, 1, 4, 7, 6, 0, 0, 7, 4, 3, 3, 0, 0, 7, 4, 2, 8, 0, 6, 9, 7, 2, 4, 9, 8, 7, 4, 2, 9, 2, 4, 0, 6, 7, 1, 1, 5, 9, 3, 2, 5, 0, 7, 1, 7, 3, 5, 1, 1, 2, 6, 4, 2, 7, 0, 5, 0, 8, 1, 3, 5, 7, 0, 4, 2, 6, 2, 1, 2, 8, 3
Offset: 0
Examples
0.99984999024682965633806705924046378147600743300742806972498742924...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Dirichlet Beta Function.
- Wikipedia, Dirichlet beta function.
Crossrefs
Programs
-
Mathematica
RealDigits[DirichletBeta[8], 10, 102] // First
-
PARI
(zetahurwitz(8,1/4)-zetahurwitz(8,3/4))*(1/4)^8 \\ Hugo Pfoertner, Feb 07 2020
Formula
beta(8) = Sum_{n>=0} (-1)^n/(2n+1)^8 = (zeta(8, 1/4) - zeta(8, 3/4))/65536 = (PolyGamma(7, 1/4) - PolyGamma(7, 3/4))/330301440.
Equals ClausenFunction(8, Pi/2).
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^8)^(-1). - Amiram Eldar, Nov 06 2023