A258816 Decimal expansion of the Dirichlet beta function of 9.
9, 9, 9, 9, 4, 9, 6, 8, 4, 1, 8, 7, 2, 2, 0, 0, 8, 9, 8, 2, 1, 3, 5, 8, 8, 7, 3, 2, 9, 3, 8, 4, 7, 5, 2, 7, 3, 7, 2, 7, 4, 7, 9, 9, 6, 9, 1, 7, 9, 6, 1, 6, 0, 1, 2, 2, 3, 1, 6, 2, 7, 2, 3, 0, 8, 2, 9, 7, 8, 6, 5, 1, 3, 7, 9, 0, 4, 8, 5, 6, 3, 8, 8, 6, 1, 7, 1, 3, 9, 0, 2, 5, 8, 3, 2, 6, 5, 2, 9, 7, 3, 0, 7, 8
Offset: 0
Examples
0.999949684187220089821358873293847527372747996917961601223162723...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Dirichlet Beta Function.
- Wikipedia, Dirichlet beta function.
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:=RealField(); 277*Pi(R)^9/8257536; // G. C. Greubel, Aug 24 2018
-
Mathematica
RealDigits[DirichletBeta[9], 10, 104] // First
-
PARI
default(realprecision, 100); 277*Pi^9/8257536 \\ G. C. Greubel, Aug 24 2018
Formula
beta(9) = Sum_{n>=0} (-1)^n/(2n+1)^9 = (zeta(9, 1/4) - zeta(9, 3/4))/262144 = 277*Pi^9/8257536.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^9)^(-1). - Amiram Eldar, Nov 06 2023