A258817 a(n) = (!0 + !1 +... + !(n-1)) mod n.
0, 1, 2, 0, 3, 3, 0, 0, 8, 5, 4, 0, 9, 7, 8, 0, 13, 9, 4, 0, 14, 11, 14, 0, 3, 13, 17, 0, 25, 15, 4, 0, 26, 17, 28, 0, 30, 19, 35, 0, 4, 21, 9, 0, 8, 23, 32, 0, 7, 25, 47, 0, 30, 27, 48, 0, 23, 29, 45, 0, 48, 31, 35, 0, 48, 33, 12, 0, 14, 35, 7, 0, 34, 37, 53
Offset: 1
Keywords
Examples
a(5)= 3 because !0 + !1 + !2 + !3 + !4 = 1 + 0 + 1 + 2 + 9 = 13 == 3 mod 5.
Programs
-
Maple
A:= proc(n) option remember; if n<=1 then 1-n else (n-1)*(procname(n-1)+procname(n-2)); fi; end; a:=n->n!*sum((-1)^k/k!, k=0..n): lf:=n->add(A(k), k=0..n-1);[seq(lf(n) mod n, n=1..40)];
-
Mathematica
Table[Mod[Total[Subfactorial[Range[0, n-1]]], n], {n, Range[80]}]
Formula
a(n)= A173184(n) mod n.
Comments