A258822 Number of times that k iterations of n under the '3x+1' map yield k for some k.
0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
For n = 6, the '3x+1' map is as follows: 6 -> 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1. Here the number of iterations is 8. However, after the k-th iteration, the result does not equal k. Thus a(6) = 0. For n = 7, the '3x+1' map is as follows: 7 -> 22 -> 11 -> 34 -> 17 -> 52 -> 26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1. Only after 10 iterations do we arrive at 10. Since this is the only time this happens, a(7) = 1.
Links
Programs
-
Mathematica
A258822[n_]:=Count[MapIndexed[{#1}==#2-1&,NestWhileList[If[OddQ[#],3#+1,#/2]&,n,#>1&]],True];Array[A258822,100] (* Paolo Xausa, Nov 06 2023 *)
-
PARI
Tvect(n)=v=[n]; while(n!=1, if(n%2, k=(3*n+1); v=concat(v, k); n=k); if(!(n%2), k=n/2; v=concat(v, k); n=k)); v for(n=1, 200, d=Tvect(n); c=0; for(i=1, #d, if(d[i]==i-1, c++)); print1(c, ", "))
Comments