cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258767 With a(1) = 1, a(n) is the smallest number not already in the sequence such that a(n)^2 + a(n-1)^2 is not squarefree.

Original entry on oeis.org

1, 7, 14, 2, 4, 3, 6, 8, 10, 5, 12, 9, 13, 16, 18, 15, 20, 21, 22, 11, 23, 36, 24, 26, 28, 29, 47, 46, 30, 25, 35, 40, 32, 34, 17, 19, 33, 27, 31, 42, 38, 41, 37, 39, 45, 48, 44, 50, 49, 43, 51, 54, 52, 56, 58, 59, 62, 60, 55, 65, 70, 63, 57, 66, 64, 68, 72, 69, 67, 81, 75, 78, 71, 53, 79, 97, 96, 74
Offset: 1

Views

Author

Derek Orr, Jun 09 2015

Keywords

Comments

Believed to be a permutation of the natural numbers.

Crossrefs

Cf. A258768 (fixed points).
Cf. A008966, A258827 (putative inverse).

Programs

  • Haskell
    import Data.List (delete)
    a258767 n = a258767_list !! (n-1)
    a258767_list = 1 : f 1 [2..] where
       f x zs = g zs where
         g (y:ys) | a008966 (x^2 + y^2) == 1 = g ys
                  | otherwise = y : f y (delete y zs)
    -- Reinhard Zumkeller, Jun 11 2015
  • PARI
    v=[1]; n=1; while(n<100, if(!issquarefree(n^2+v[#v]^2)&&!vecsearch(vecsort(v), n), v=concat(v, n); n=0); n++); v
    

A258768 Fixed points in A258767.

Original entry on oeis.org

1, 8, 13, 34, 45, 49, 51, 80, 86, 92, 98, 146, 163, 164, 206, 216, 266, 279, 303, 312, 333, 337, 348, 356, 359, 371, 387, 388, 398, 406, 421, 432, 445, 460, 463, 465, 509, 517, 533, 536, 546, 548, 572, 576, 585, 602, 607, 612, 624, 638, 658, 666, 669, 675, 688, 704, 711, 734, 744, 765, 771, 801, 810, 814
Offset: 1

Views

Author

Derek Orr, Jun 09 2015

Keywords

Comments

Numbers n such that A258767(n) = n.
Also fixed points of A258827. - Reinhard Zumkeller, Jun 11 2015

Crossrefs

Programs

  • Haskell
    a258768 n = a258768_list !! (n-1)
    a258768_list = [x | x <- [1..], a258767 x == x]
    -- Reinhard Zumkeller, Jun 11 2015
  • PARI
    print1(1, ", "); v=[1]; n=1; while(#v<10^3, if(!issquarefree(n^2+v[#v]^2)&&!vecsearch(vecsort(v), n), v=concat(v, n); if(n==#v, print1(n, ", ")); n=0); n++)
    
Showing 1-2 of 2 results.