cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258830 Number of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums.

Original entry on oeis.org

1, 1, 2, 5, 20, 87, 522, 3271, 26168, 214955, 2149550, 21881103, 262573236, 3191361201, 44679056814, 631546127049, 10104738032784, 162891774138339, 2932051934490102, 53094870211027831, 1061897404220556620, 21342730463672017301, 469540070200784380622
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2015

Keywords

Examples

			p = 1432 is counted by a(4) because the up-down signature of 0,p = 01432 is 1,1,-1,-1 with partial sums 1,2,1,0.
a(0) = 1: the empty permutation.
a(1) = 1: 1.
a(2) = 2: 12, 21.
a(3) = 5: 123, 132, 213, 231, 312.
a(4) = 20: 1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431, 3124, 3142, 3241, 3412, 3421, 4123, 4132, 4231.
		

Crossrefs

Row sums of A258829.
Main diagonal of A262163.
Cf. A000246.

Programs

  • Maple
    b:= proc(u, o, c) option remember;
          `if`(c<0, 0, `if`(u+o<=c, (u+o)!,
           add(b(u-j, o-1+j, c+1), j=1..u)+
           add(b(u+j-1, o-j, c-1), j=1..o)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..30);
  • Mathematica
    b[u_, o_, c_] := b[u, o, c] = If[c < 0, 0, If[u + o <= c, (u + o)!,
        Sum[b[u - j, o - 1 + j, c + 1], {j, 1, u}] +
        Sum[b[u + j - 1, o - j, c - 1], {j, 1, o}]]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 30] (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)

Formula

a(n) ~ c * n! / sqrt(n), where c = 2.03565662136472375868003536175448... . - Vaclav Kotesovec, Jun 21 2015