cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258839 Carmichael numbers whose prime factors all have the form p=1+x^2+y^2 for some x,y in Z.

Original entry on oeis.org

561, 162401, 410041, 488881, 656601, 2433601, 36765901, 109393201, 171454321, 176659201, 178837201, 189941761, 221884001, 288120421, 600892993, 618068881, 721244161, 931694401, 985052881, 1183104001, 1828377001, 1848112761, 1943951041, 2361232477, 2438403661
Offset: 1

Views

Author

Michel Marcus, Jun 12 2015

Keywords

Comments

Banks & Freiberg show that this sequence is infinite.

Crossrefs

Cf. A002997 (Carmichael numbers), A079545 (primes of the form x^2 + y^2 + 1).

Programs

  • PARI
    has(n)=for(x=sqrtint(n\2),sqrtint(n-1), if(issquare(n-x^2-1), return(1)));0
    Korselt(n,f=factor(n))=for(i=1,#f~,if(f[i, 2]>1||(n-1)%(f[i, 1]-1),return(0))); 1
    is(n)=my(f); if(n%2==0||isprime(n)||!Korselt(n,f=factor(n))||n<9, return(0)); for(i=1,#f~,if(!has(f[i,1]), return(0))); 1 \\ Charles R Greathouse IV, Jun 12 2015