A258839 Carmichael numbers whose prime factors all have the form p=1+x^2+y^2 for some x,y in Z.
561, 162401, 410041, 488881, 656601, 2433601, 36765901, 109393201, 171454321, 176659201, 178837201, 189941761, 221884001, 288120421, 600892993, 618068881, 721244161, 931694401, 985052881, 1183104001, 1828377001, 1848112761, 1943951041, 2361232477, 2438403661
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Claude Goutier; terms 1..733 from Giovanni Resta)
- William D. Banks and Tristan Freiberg, Carmichael numbers and the sieve, Journal of Number Theory, Vol. 165 (2016), pp. 15-29; arXiv preprint, arXiv:1506.03497 [math.NT], 2015.
- Claude Goutier, Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22.
- Index entries for sequences related to Carmichael numbers.
Programs
-
PARI
has(n)=for(x=sqrtint(n\2),sqrtint(n-1), if(issquare(n-x^2-1), return(1)));0 Korselt(n,f=factor(n))=for(i=1,#f~,if(f[i, 2]>1||(n-1)%(f[i, 1]-1),return(0))); 1 is(n)=my(f); if(n%2==0||isprime(n)||!Korselt(n,f=factor(n))||n<9, return(0)); for(i=1,#f~,if(!has(f[i,1]), return(0))); 1 \\ Charles R Greathouse IV, Jun 12 2015
Comments