cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258844 Numbers k with the property that it is possible to write the base 2 expansion of k as concat(a_2,b_2), with a_2>0 and b_2>0 such that, converting a_2 and b_2 to base 10 as a and b, we have (a+b)^2 = k.

Original entry on oeis.org

9, 36, 49, 100, 225, 784, 961, 1296, 2601, 3969, 7225, 8281, 14400, 16129, 18496, 21609, 29241, 34969, 42025, 65025, 116964, 123201, 133225, 246016, 261121, 278784, 465124, 508369, 672400, 700569, 828100, 1046529, 1368900, 1590121, 1782225, 4064256, 4190209, 4326400
Offset: 1

Views

Author

Paolo P. Lava, Jun 12 2015

Keywords

Comments

Obviously all terms are squares.
The terms that have b=1 are: 9, 49, 225, 961, 3969, 16129, 65025, ...; see A060867 ((2^n-1)^2). - Michel Marcus, Jun 13 2015

Examples

			9 in base 2 is 1001. If we take 1001 = concat(10,01) then 10 and 01 converted to base 10 are 2 and 1. Finally (2 + 1)^2 = 3^2 = 9;
36 in base 2 is 100100. If we take 100100 = concat(10,0100) then 10 and 0100 converted to base 10 are 2 and 4. Finally (2 + 4)^2 = 6^2 = 36.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n;
    for n from 1 to q do c:=convert(n,binary,decimal);
    for k from 1 to ilog10(c) do
    a:=convert(trunc(c/10^k),decimal,binary);
    b:=convert((c mod 10^k),decimal,binary);
    if a*b>0 then if (a+b)^2=n then print(n); break;
    fi; fi; od; od; end: P(10^6);
  • PARI
    isok(n) = {b = binary(n); if (#b > 1, for (k=1, #b-1, vba = Vecrev(vector(k, i, b[i])); vbb = Vecrev(vector(#b-k, i, b[k+i])); da = sum(i=1, #vba, vba[i]*2^(i-1)); db = sum(i=1, #vbb, vbb[i]*2^(i-1)); if ((da+ db)^2 == n, return(1));););} \\ Michel Marcus, Jun 13 2015