A258861 The pi-based antiderivative of n: the least m such that A258851(m) equals n.
0, 2, 3, 5, 4, 11, 13, 6, 19, 23, 29, 10, 8, 41, 43, 14, 53, 59, 61, 15, 12, 22, 79, 83, 89, 26, 21, 103, 107, 109, 25, 34, 16, 18, 139, 38, 151, 33, 163, 167, 173, 35, 181, 191, 28, 197, 199, 211, 223, 58, 229, 233, 24, 30, 27, 51, 49, 269, 55, 277, 281, 74
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
with(numtheory): d:= n-> n*add(i[2]*pi(i[1])/i[1], i=ifactors(n)[2]): a:= proc() local t, a; t, a:= -1, proc() -1 end; proc(n) local h; while a(n) = -1 do t:= t+1; h:= d(t); if a(h) = -1 then a(h):= t fi od; a(n) end end(): seq(a(n), n=0..100);
-
Mathematica
A258851[n_] := If[n == 0, 0, n*Total[Last[#]*PrimePi[First[#]]/First[#]& /@ FactorInteger[n]]]; a[n_] := For[m = 0, True, m++, If[A258851[m] == n, Return[m]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 10 2023 *)