A258897 Divisorial primes p such that p-1 = Product_{d|k} d for some k < sqrt(p-1).
331777, 8503057, 9834497, 59969537, 562448657, 916636177, 3208542737, 3782742017, 5006411537, 7676563457, 11574317057, 19565295377, 34188010001, 38167092497, 49632710657, 56712564737, 59553569297, 61505984017, 104086245377, 114733948177
Offset: 1
Keywords
Examples
Prime p = 331777 is in sequence because p - 1 = 331776 = 576^2 is the product of divisors of 24 and 24 < 576.
Links
- Jaroslav Krizek and Chai Wah Wu, Table of n, a(n) for n = 1..500 [a(n) for n = 1..43 from Jaroslav Krizek].
Programs
-
Magma
Set(Sort([&*(Divisors(n))+1: n in [1..1000] | &*(Divisors(n)) ne n^2 and IsSquare(&*(Divisors(n))) and IsPrime(&*(Divisors(n))+1)]));
-
Magma
[n: n in [A258455(n)] | not IsPrime(Floor(Sqrt(n-1)) div 2)];
Comments