cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258970 E.g.f.: A'(x) = 1 + A(x)^4, with A(0)=1.

Original entry on oeis.org

1, 2, 8, 80, 1088, 19328, 422912, 10987520, 330555392, 11300913152, 432717037568, 18344259092480, 852932666851328, 43157160112160768, 2360748463307620352, 138821061188696145920, 8732741520836633034752, 585172975239737913638912, 41612642758392039581155328
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 15 2015

Keywords

Examples

			A(x) = 1 + 2*x + 8*x^2/2! + 80*x^3/3! + 1088*x^4/4! + 19328*x^5/5! + ...
A'(x) = 2 + 8*x + 40*x^2 + 544*x^3/3 + 2416*x^4/3 + 52864*x^5/15 + ...
1 + A(x)^4 = 2 + 8*x + 40*x^2 + 544*x^3/3 + 2416*x^4/3 + 52864*x^5/15 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; Subscript[a,0]=1; egf=Sum[Subscript[a,k]*x^k, {k,0,nmax+1}]; Table[Subscript[a,k]*k!, {k,0,nmax}] /.Solve[Take[CoefficientList[Expand[1+egf^4-D[egf,x]],x],nmax]==ConstantArray[0,nmax]][[1]]
  • PARI
    {a(n) = local(A=1); A = 1 + serreverse( intformal( 1/(1 + (1+x)^4 +x*O(x^n)) )); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 16 2015

Formula

a(n) ~ n! * d^(n+1/3) / (3^(1/3) * GAMMA(1/3) * n^(2/3)), where d = 1 / Sum_{j>=1} (-1)^(j+1)/(4*j-1) = 4*sqrt(2)/(Pi + log(3-2*sqrt(2))) = 4.10260201986929...
E.g.f.: 1 + Series_Reversion( Integral 1/(1 + (1+x)^4) dx ). - Paul D. Hanna, Jun 16 2015