A258991 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,4).
0, 8, 3, 6, 7, 3, 1, 1, 3, 0, 1, 6, 4, 9, 5, 3, 6, 1, 6, 1, 4, 8, 9, 0, 4, 3, 6, 5, 4, 2, 3, 8, 7, 7, 0, 5, 4, 3, 8, 2, 4, 6, 7, 3, 2, 5, 5, 4, 1, 5, 4, 1, 6, 8, 3, 6, 0, 7, 5, 9, 1, 8, 3, 5, 5, 4, 3, 8, 1, 9, 1, 2, 7, 1, 4, 5, 6, 2, 4, 0, 1, 1, 9, 9, 6, 0, 7, 2, 6, 9, 1, 9, 7, 6, 9, 7, 6, 6, 4, 2, 6, 0, 3, 7, 6, 9, 7
Offset: 0
Examples
0.08367311301649536161489043654238770543824673255415416836075918355438...
Links
- Eric Weisstein's MathWorld, Multivariate Zeta Function
- Wikipedia, Multiple zeta function
Crossrefs
Programs
-
Mathematica
Join[{0}, RealDigits[(1/2)*(Zeta[4]^2 - Zeta[8]), 10, 106] // First]
-
PARI
zetamult([4,4]) \\ Charles R Greathouse IV, Jan 21 2016
-
PARI
(zeta(4)^2-zeta(8))/2 \\ Charles R Greathouse IV, Jan 20 2022
Formula
zetamult(4,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^4)) = (1/2)*(zeta(4)^2 - zeta(8)).