A258995 Third pi-based antiderivative of n: the least m such that A258851^3(m) equals n.
0, 5, 11, 10, 4, 29, 35, 41, 14, 431, 599, 78, 15, 38, 201, 191, 25, 382, 186, 43, 19, 65, 94, 3001, 535, 22, 42, 633, 317, 4397, 21, 141, 8, 74, 574, 214, 1286, 61, 253, 247, 1417, 163, 115, 217, 66, 546, 138, 10631, 1997, 51, 12097, 12301, 362, 26, 563, 1013
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
with(numtheory): d:= n-> n*add(i[2]*pi(i[1])/i[1], i=ifactors(n)[2]): a:= proc() local t, a; t, a:= -1, proc() -1 end; proc(n) local h; while a(n) = -1 do t:= t+1; h:= d(d(d(t))); if a(h) = -1 then a(h):= t fi od; a(n) end end(): seq(a(n), n=0..100);
-
Mathematica
d[n_] := d[n] = If[n == 0, 0, n*Total[Last[#]*PrimePi[First[#]]/First[#] & /@ FactorInteger[n]]]; A[n_, k_] := For[m = 0, True, m++, If[Nest[d, m, k] == n, Return[m]]]; a[n_] := A[n, 3]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 17 2024 *)