A259020 Numbers k such that k^2 + 1 is a divisorial prime (A258455).
1, 6, 10, 14, 26, 74, 94, 134, 146, 206, 314, 326, 386, 466, 576, 634, 674, 1094, 1174, 1294, 1306, 1354, 1366, 1546, 1654, 1766, 1774, 1894, 1966, 2026, 2126, 2174, 2326, 2594, 2654, 2746, 2916, 2974, 2986, 3046, 3106, 3134, 3136, 3214, 3254, 3274, 3314, 3326
Offset: 1
Keywords
Examples
The number 6 is in sequence because prime 37 = 6^2 + 1 is prime of the form p = 1 + Product_{d|k} d = 1 + A007955(k) for k = 6.
Links
- OEIS wiki, Divisorial primes
Programs
-
Magma
Set(Sort([1] cat [Floor(Sqrt(&*(Divisors(n)))): n in [3..10000] | IsPrime(&*(Divisors(n))+1)]));
Comments