cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259025 Numbers k such that k is the average of four consecutive primes k-11, k-1, k+1 and k+11.

Original entry on oeis.org

420, 1050, 2028, 2730, 3582, 4230, 4242, 4272, 4338, 6090, 6132, 6690, 6792, 8220, 11058, 11160, 11970, 12252, 15288, 19542, 19698, 21588, 21600, 26892, 27540, 28098, 28308, 29400, 30840, 30870, 31080, 32412, 42072, 45318, 47808, 48120
Offset: 1

Views

Author

Karl V. Keller, Jr., Jun 16 2015

Keywords

Comments

This sequence is a subsequence of A014574 (average of twin prime pairs) and A256753.
The terms ending in 0 are congruent to 0 mod 30.
The terms ending in 2 and 8 are congruent to 12 mod 30 and 18 mod 30 respectively.

Examples

			For n=420: 409, 419, 421, 431 are consecutive primes (n-11=409, n-1=419, n+1=421, n+11=431).
For n=1050: 1039, 1049, 1051, 1061 are consecutive primes (n-11=1039, n-1=1049, n+1=1051, n+11=1061).
		

Crossrefs

Cf. A052376, A077800 (twin primes), A014574, A249674 (30n), A256753.

Programs

  • Mathematica
    {p, q, r, s} = {2, 3, 5, 7}; lst = {}; While[p < 50000, If[ Differences[{p, q, r, s}] == {10, 2, 10}, AppendTo[lst, q + 1]]; {p, q, r, s} = {q, r, s, NextPrime@ s}]; lst (* Robert G. Wilson v, Jul 15 2015 *)
    Mean/@Select[Partition[Prime[Range[5000]],4,1],Differences[#]=={10,2,10}&] (* Harvey P. Dale, Sep 11 2019 *)
  • PARI
    is(n)=n%6==0&&isprime(n-11)&&isprime(n-1)&&isprime(n+1)&&isprime(n+11)&&!isprime(n-7)&&!isprime(n-5)&&!isprime(n+5)&&!isprime(n+7) \\ Charles R Greathouse IV, Jul 17 2015
  • Python
    from sympy import isprime,prevprime,nextprime
    for i in range(0,50001,2):
      if isprime(i-1) and isprime(i+1):
        if prevprime(i-1) == i-11 and nextprime(i+1) == i+11 :  print (i,end=', ')
    

Formula

a(n) = A052376(n) + 11. - Robert G. Wilson v, Jul 15 2015