cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259040 Numbers n such that digital root of n is 3*(digital root of n-th prime).

Original entry on oeis.org

12, 15, 21, 33, 60, 75, 84, 93, 123, 186, 264, 327, 384, 519, 651, 654, 678, 726, 753, 762, 771, 807, 831, 852, 870, 897, 924, 975, 993, 1023, 1029, 1056, 1110, 1122, 1128, 1149, 1194, 1203, 1248, 1257, 1272, 1290, 1302, 1308, 1317, 1347, 1407, 1437, 1443, 1464, 1482, 1524, 1527, 1533, 1554, 1581, 1644, 1662, 1677
Offset: 1

Views

Author

Zak Seidov, Jun 17 2015

Keywords

Comments

Corresponding primes:
37, 47, 73, 137, 281, 379, 433, 487, 677, 1109, 1693, 2179, 2657, 3719, 4861, 4889, 5077, 5501, 5717, 5807, 5861, 6203, 6373, 6581, 6761, 6977, 7229, 7687, 7867, 8147, 8209, 8443, 8929, 9029, 9091, 9281, 9677, 9749, 10163, 10253, 10369, 10567, 10667, 10729, 10837, 11117, 11719, 11981.
Conjecture: a(n) ~ 27n. - Charles R Greathouse IV, Jun 18 2015
All terms are divisible by 3 but not by 9. - Robert Israel, Dec 03 2019

Crossrefs

Programs

  • Maple
    droot:= n -> subs(0=9, n mod 9):
    select(t -> droot(t) = 3*droot(ithprime(t)), [seq(i,i=3..10000,3)]); # Robert Israel, Dec 03 2019
  • Mathematica
    Reap[Do[If[FixedPoint[Total[IntegerDigits[#]]&,n]==3*Mod[Prime[n], 9], Sow[{n,Prime[n]}]],{n,2000}]][[2,1]]
  • PARI
    n=0; forprime(p=2, 1e4, if(p%9*3==n++%9, print1(n", "))) \\ Charles R Greathouse IV, Jun 18 2015