A259052 Sum of Pascal triples.
3, 4, 4, 4, 5, 6, 8, 6, 5, 6, 8, 13, 12, 13, 8, 6, 7, 10, 19, 20, 26, 20, 19, 10, 7, 8, 12, 26, 30, 45, 40, 45, 30, 26, 12, 8, 9, 14, 34, 42, 71, 70, 90, 70, 71, 42, 34, 14, 9, 10, 16, 43, 56, 105, 112, 161, 140, 161, 112, 105, 56, 43, 16, 10
Offset: 1
Examples
The irregular triangle T(n, k) starts: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 1: 3 2: 4 4 4 3: 5 6 8 6 5 4: 6 8 13 12 13 8 6 5: 7 10 19 20 26 20 19 10 7 6: 8 12 26 30 45 40 45 30 26 12 8 7: 9 14 34 42 71 70 90 70 71 42 34 14 9 ... T(3, 2) = 6 from the sum of the Pascal triple (1, 2, 3) (from the first down triangle in Pascal's triangle strip S_3). The height ratio H/r for this Pascal triple PT(3, 2) = (1, 2, 3) is (1 + 2 + 3)/3 = T(3, 2)/3 = 2.
Links
- Craig Knecht, Pascal triples
- Craig Knecht, Sum of triples table
Programs
-
PARI
tabl(nn) = {for (n=1, nn, for (k=1, 2*n-1, kk = (k+1)\2; if (k%2, v = binomial(n-1, kk-1) + binomial(n, kk-1) + binomial(n, kk), v = binomial(n, kk) + binomial(n-1, kk-1) + binomial(n-1, kk)); print1(v, ", ");); print(););} \\ Michel Marcus, Jun 27 2015
Comments