cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259074 Triangle T(n,k) = Sum_{j=0..(n-k)/3} C(n-3*j-1,k-1)*C(n-k-3*j,j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, 4, 6, 4, 1, 3, 7, 10, 10, 5, 1, 4, 12, 18, 20, 15, 6, 1, 5, 19, 33, 39, 35, 21, 7, 1, 7, 28, 58, 76, 75, 56, 28, 8, 1, 10, 42, 96, 144, 156, 132, 84, 36, 9, 1, 14, 64, 156, 260, 315, 294, 217, 120, 45, 10, 1, 19, 97, 253, 455, 610, 630, 518, 338, 165, 55, 11, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Jun 18 2015

Keywords

Examples

			[1]
[1,1]
[1,2,1]
[1,3,3,1]
[2,4,6,4,1]
[3,7,10,10,5,1]
		

Crossrefs

Column k=1 gives A003269, column k=2 A292324.
Row sums give A008999(n-1) for n>0.

Programs

  • Mathematica
    Table[Sum[Binomial[n - 3*j - 1, k - 1] Binomial[n - k - 3*j, j], {j, 0, (n - k)/3}], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Jun 19 2015 *)
  • Maxima
    T(n,k):=sum(binomial(n-3*j-1,k-1)*binomial(n-k-3*j,j),j,0,(n-k)/3);

Formula

G.f.: (x*y)/(1-x-x^4-x*y).