cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259077 Non-palindromic composite numbers such that n' = [Rev(n)]', where n' is the arithmetic derivative of n.

Original entry on oeis.org

366, 663, 3245, 3685, 5423, 5863, 8178, 8718, 14269, 15167, 16237, 18449, 18977, 36679, 73261, 76151, 77981, 94481, 96241, 97663, 140941, 149041, 150251, 152051, 196891, 198691, 302363, 308459, 319853, 335148, 358913, 363203, 841533, 921239, 932129, 954803, 958099, 990859
Offset: 1

Views

Author

Paolo P. Lava, Jun 18 2015

Keywords

Examples

			366' = 311 = 663';
3245' = 999 = 5423'; etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0;
    for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10);
    od; y; end: P:=proc(q) local a,b,p,n;
    for n from 1 to q do if not isprime(n) then if n<>T(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    b:=T(n)*add(op(2,p)/op(1,p),p=ifactors(T(n))[2]);
    if a=b then print(n); fi; fi; fi; od; end: P(10^9);

Formula

Solutions to A003415(n) = A003415(A004086(n)), with A004086(n) <> n.