A259097 Triangle read by rows: T(n,r) = binomial(n,r)*binomial(2*n-3*r-4,n-2*r-2)/(n-r-1), n >= 2, r = 0..floor(n/2)-1.
1, 1, 2, 2, 5, 5, 14, 15, 5, 42, 49, 21, 132, 168, 84, 14, 429, 594, 336, 84, 1430, 2145, 1350, 420, 42, 4862, 7865, 5445, 1980, 330, 16796, 29172, 22022, 9075, 1980, 132, 58786, 109174, 89232, 40898, 10725, 1287, 208012, 411502, 361998, 182182, 55055, 9009, 429, 742900, 1560090, 1469650, 804440, 273273, 55055, 5005
Offset: 2
Examples
Triangle begins: 1; 1; 2, 2; 5, 5; 14, 15, 5; 42, 49, 21; 132, 168, 84, 14; 429, 594, 336, 84; 1430, 2145, 1350, 420, 42; 4862, 7865, 5445, 1980, 330; 16796, 29172, 22022, 9075, 1980, 132; 58786, 109174, 89232, 40898, 10725, 1287; 208012, 411502, 361998, 182182, 55055, 9009, 429; 742900, 1560090, 1469650, 804440, 273273, 55055, 5005; 2674440, 5943200, 5969040, 3527160, 1324960, 312312, 40040, 1430; ...
Links
- Indranil Ghosh, Rows 2..125, flattened
- F. R. Bernhart & N. J. A. Sloane, Emails, April-May 1994
Programs
-
Magma
/* As triangle: */ [[Binomial(n,k)*Binomial(2*n-3*k-4,n-2*k-2)/(n-k-1): k in [0..Floor(n/2)-1]]: n in [2..15]]; // Vincenzo Librandi, Jun 22 2015
-
Maple
T:=(n,r) -> binomial(n,r)*binomial(2*n-3*r-4,n-2*r-2)/(n-r-1); v:=n->[seq(T(n,r),r=0..floor(n/2)-1)]; for n from 2 to 16 do lprint(v(n)); od:
-
Mathematica
Flatten[Table[Binomial[n,r] Binomial[2n-3r-4,n-2r-2]/(n-r-1),{n,2,16},{r,0,Floor[(n/2)]-1}]] (* Indranil Ghosh, Feb 20 2017 *)