A259101 Square array read by antidiagonals arising in the enumeration of corners.
1, 2, 2, 5, 16, 5, 14, 91, 91, 14, 42, 456, 936, 456, 42, 132, 2145, 7425, 7425, 2145, 132, 429, 9724, 50765, 85800, 50765, 9724, 429, 1430, 43043, 315315, 805805, 805805, 315315, 43043, 1430, 4862, 187408, 1831648, 6584032, 9962680, 6584032, 1831648, 187408, 4862, 16796, 806208, 10127988, 48674808, 103698504, 103698504, 48674808, 10127988, 806208, 16796
Offset: 0
Examples
The first few antidiagonals are: 1, 2, 2, 5, 16, 5, 14, 91, 91, 14, 42, 456, 936, 456, 42, 132, 2145, 7425, 7425, 2145, 132, ...
Links
- G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295.
- G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295. (Annotated scanned copy)
Crossrefs
Programs
-
Mathematica
a[x_, y_] := (2(2x+2y+1)!(x^2+3x*y+y^2+4x+4y+3)) / (x!(x+1)!y!(y+1)!(x+y+1)(x+y+2)(x+y+3)); Table[Table[a[x-y, y], {y, 0, x}] // Reverse, {x, 0, 9}] // Flatten (* Jean-François Alcover, Aug 11 2017 *)
Formula
Kreweras gives an explicit formula for the general term (see bottom display on page 291).
Extensions
More terms from Jean-François Alcover, Aug 11 2017
Comments