A259113 E.g.f. satisfies: A(x) = Integral 1 + A(x)^8 dx.
1, 40320, 18598035456000, 474009962689446543360000, 170149872975531014630262649651200000, 442695618409212548301531680485487369256960000000, 5620045472937667963281036681944526735620775198955929600000000
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..56
Programs
-
PARI
{a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^8 + O(x^(8*n+2))) ) ); (8*n+1)!*polcoeff(A, 8*n+1)} for(n=0, 20, print1(a(n), ", ")) \\ after Paul D. Hanna
Formula
a(n) ~ 2^(24*n+48/7) * n^(1/7) * (sin(Pi/8)/Pi)^(8*n+8/7) * (8*n)! / (7^(1/7) * GAMMA(1/7)).
a(n) ~ 2^(16*n+40/7) * (2-sqrt(2))^(4*n+4/7) * n^(1/7) * (8*n)! / (7^(1/7) * GAMMA(1/7) * Pi^(8*n+8/7)).
Comments