A259115 Number of unrooted binary ordered tanglegrams of size n.
1, 1, 1, 2, 4, 31, 243, 3532, 62810, 1390718, 36080361, 1076477512, 36281518847, 1363869480379, 56587508558171, 2569141702825037, 126714642738385906, 6747643861563535720, 385875940575529343271, 23588199955061659841248, 1535037278334227258123709, 105961521687913311720698169
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- S. C. Billey, M. Konvalinka, and F. A. Matsen IV, On the enumeration of tanglegrams and tangled chains, arXiv:1507.04976 [math.CO], 2015.
- Ira M. Gessel, Counting tanglegrams with species, arXiv:1509.03867 [math.CO], (13-September-2015)
- F. A. Matsen IV, S. C. Billey, D. A. Kas, and M. Konvalinka, Tanglegrams: a reduction tool for mathematical phylogenetics, arXiv:1507.04784 [q-bio.PE], 2015.
- Frederick A. Matsen, Sage/GAP4 Code for generating tanglegrams
Crossrefs
Programs
-
PARI
\\ See links in A339645 for combinatorial species functions. rootedBinTrees(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, n, v[n]=(sum(j=1, n-1, v[j]*v[n-j]) + if(n%2, 0, sRaiseCI(v[n/2], n/2, 2)))/2); x*Ser(v)} cycleIndexSeries(n)={my(g=rootedBinTrees(n), u = g + (sRaise(g,3) - g^3)/3); sCartProd(u,u)} NumUnlabeledObjsSeq(cycleIndexSeries(12)) \\ Andrew Howroyd, Dec 24 2020
Extensions
More terms from Ira M. Gessel, Jul 19 2015
Terms a(15) and beyond from Andrew Howroyd, Dec 24 2020
Comments