A259124 If n is representable as x*y+x+y, with x>=y>1, then a(n) is the sum of all x's and y's in all such representations. Otherwise a(n)=0.
0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 5, 0, 0, 6, 6, 0, 7, 0, 7, 8, 0, 0, 17, 8, 0, 10, 9, 0, 20, 0, 10, 12, 0, 10, 34, 0, 0, 14, 23, 0, 26, 0, 13, 28, 0, 0, 43, 12, 13, 18, 15, 0, 32, 14, 29, 20, 0, 0, 67, 0, 0, 36, 32, 16, 38, 0, 19, 24, 32, 0, 76, 0, 0, 44, 21, 16, 44, 0, 57, 44
Offset: 1
Keywords
Examples
11 = 3*2 + 3 + 2, so a(11)=5.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local D,d; D:= select(t -> (t >= 3 and t^2 <= n+1), numtheory:-divisors(n+1)); add(d + (n+1)/d - 2, d = D); end proc: map(f, [$1..100]); # Robert Israel, Aug 05 2015
-
Mathematica
a[n_] := Sum[Boole[3 <= d <= Sqrt[n+1]] (d+(n+1)/d-2), {d, Divisors[n+1]}]; Array[a, 100] (* Jean-François Alcover, Jun 08 2020, after Maple *)
-
PARI
a(n)=sum(y=2,sqrtint(n+1)-1, my(x=(n-y)/(y+1)); if(denominator(x)==1, x+y)) \\ Charles R Greathouse IV, Jun 29 2015
-
Python
TOP = 100 a = [0]*TOP for y in range(2, TOP//2): for x in range(y, TOP//2): n = x*y + x + y if n>=TOP: break a[n] += x+y print(a[1:])
-
Python
from sympy import divisors def A259124(n): m, c = n+1, 0 for d in divisors(m): if d**2>m: break if d>=3: c += d+m//d-2 return c # Chai Wah Wu, Oct 15 2024
Formula
a(n) = Sum({d: d | n+1 and 3 <= d <= sqrt(n+1)}, d + (n+1)/d - 2). - Robert Israel, Aug 05 2015
Comments