A259179 Number of Dyck paths described in A237593 that contain the point (n,n) in the diagram of the symmetric representation of sigma.
1, 2, 2, 0, 2, 1, 3, 0, 3, 0, 1, 2, 2, 0, 4, 0, 1, 3, 0, 2, 0, 2, 3, 0, 1, 4, 0, 2, 0, 3, 0, 3, 0, 1, 1, 4, 0, 2, 0, 4, 0, 3, 0, 1, 2, 0, 4, 0, 2, 0, 0, 5, 0, 3, 0, 1, 3, 0, 4, 0, 2, 0, 1, 0, 5, 0, 2, 1, 0, 1, 4, 0, 4, 0, 2, 0, 2, 0, 5, 0, 3, 0, 0, 0, 1, 5, 0, 2, 2, 0, 2, 0, 3, 0, 5, 0, 3, 0, 1, 0, 0, 6
Offset: 1
Keywords
Examples
Illustration of initial terms: -------------------------------------------------------- Diagram with 15 Dyck paths n A000203(n) a(n) to evaluate a(1)..a(10) -------------------------------------------------------- . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 1 1 |_| | | | | | | | | | | | | | | 2 3 2 |_ _|_| | | | | | | | | | | | | 3 4 2 |_ _| _|_| | | | | | | | | | | 4 7 0 |_ _ _| _|_| | | | | | | | | 5 6 2 |_ _ _| _| _ _|_| | | | | | | 6 12 1 |_ _ _ _| _| | _ _|_| | | | | 7 8 3 |_ _ _ _| |_ _|_| _ _|_| | | 8 15 0 |_ _ _ _ _| _| | _ _ _|_| 9 13 3 |_ _ _ _ _| | _|_| | 10 18 0 |_ _ _ _ _ _| _ _| _| . |_ _ _ _ _ _| | _| _| . |_ _ _ _ _ _ _| |_ _| . |_ _ _ _ _ _ _| | . |_ _ _ _ _ _ _ _| . |_ _ _ _ _ _ _ _| . For n = 3 there are two Dyck paths that contain the point (3,3) so a(3) = 2. For n = 4 there are no Dyck paths that contain the point (4,4) so a(4) = 0.
Crossrefs
Programs
-
Mathematica
a240542[n_] := Sum[(-1)^(k+1)Ceiling[(n+1)/k - (k+1)/2], {k, 1, Floor[(Sqrt[8n+1]-1)/2]}] a259179[n_] := Module[{t=Table[0, n], k=1, d=1}, While[d<=n, t[[d]]+=1; d=a240542[++k]]; t] (* a(1..n) *) a259179[102] (* Hartmut F. W. Hoft, Aug 06 2020 *)
Extensions
More terms from Omar E. Pol, Dec 09 2016
Comments