A259180 Amicable pairs.
220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 10744, 10856, 12285, 14595, 17296, 18416, 63020, 76084, 66928, 66992, 67095, 71145, 69615, 87633, 79750, 88730, 100485, 124155, 122265, 139815, 122368, 123152, 141664, 153176, 142310, 168730, 171856, 176336, 176272, 180848, 185368, 203432, 196724, 202444, 280540, 365084
Offset: 1
Keywords
Examples
------------------------------------ Amicable pair Sum x y x + y ------------------------------------ n A002025 A002046 A180164 ------------------------------------ 1 220 284 504 2 1184 1210 2394 3 2620 2924 5544 4 5020 5564 10584 5 6232 6368 12600 6 10744 10856 21600 7 12285 14595 26880 8 17296 18416 35712 9 63020 76084 139104 10 66928 66992 133920 11 67095 71145 138240 12 69615 87633 157248 ... ... ... ... The sum of the proper divisors (or aliquot parts) of 220 is 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284. On the other hand the sum of the proper divisors (or aliquot parts) of 284 is 1 + 2 + 4 + 71 + 142 = 220. Note that 220 + 284 = sigma(220) = sigma(284) = 504. The smallest amicable pair is (220, 284), so a(1) = 220 and a(2) = 284.
Links
- Titu Andreescu, Number Theory Trivia: Amicable Numbers
- Titu Andreescu, Number Theory Trivia: Amicable Numbers
- Anonymous, Amicable Pairs Applet Test
- Anonymous, Amicable and Social Numbers [broken link]
- S. Chernykh, Amicable Numbers
- S. Chernykh, Amicable pairs list
- G. D'Abramo, On Amicable Numbers With Different Parity, arXiv:math/0501402 [math.HO], 2005-2007.
- E. B. Escott, Amicable numbers, Scripta Mathematica, 12 (1946), 61-72 [Annotated scanned copy]
- Leonhard Euler, On amicable numbers, arXiv:math/0409196 [math.HO], 2004-2009.
- Mariano Garcia, A Million New Amicable Pairs, J. Integer Sequences, 4 (2001), #01.2.6.
- M. García, J. M. Pedersen, H. J. J. te Riele, Amicable pairs, a survey, Report MAS-R0307, Centrum Wiskunde & Informatica.
- S. S. Gupta, Amicable Numbers
- Hisanori Mishima, Amicable Numbers:first 236 pairs(smaller member<10^8) fully factorized
- David Moews, A List Of The First 5001 Amicable Pairs
- David and P. C. Moews, A List Of Amicable Pairs Below 2.01*10^11
- Passawan Noppakaew and Prapanpong Pongsriiam, Product of Some Polynomials and Arithmetic Functions, J. Int. Seq. (2023) Vol. 26, Art. 23.9.1.
- Number Theory List, NMBRTHRY Archives--August 1993
- Jan Munch Pedersen, Known Amicable Pairs [Broken link]
- Jan Munch Pedersen, Tables of Aliquot Cycles [Broken link]
- Ivars Peterson, MathTrek, Appealing Numbers
- Ivars Peterson, MathTrek, Amicable Pairs, Divisors and a New Record
- Herman J. J. te Riele, On generating new amicable pairs from given amicable pairs, Math. Comp. 42 (1984), 219-223.
- Herman J. J. te Riele, Computation of all the amicable pairs below 10^10, Math. Comp., 47 (1986), 361-368 and Supplement pp. S9-S40.
- Herman J. J. te Riele, A New Method for Finding Amicable Pairs, Proceedings of Symposia in Applied Mathematics, Volume 48, 1994.
- Ed Sandifer, Amicable numbers
- Juan Luis Varona, On the Solution of the Equation n = a*k + b*p_k by Means of an Iterative Method, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.5.
- Gérard Villemin's Almanach of Numbers, Nombres amiables et sociables
- Eric Weisstein's World of Mathematics, Amicable Pair
- Wikipedia, Amicable number
Programs
-
Mathematica
f[n_] := Block[{s = {}, g, k}, g[x_] := DivisorSigma[1, x] - x; Do[k = g@ i; If[And[g@ k == i, k != i, ! MemberQ[s, i]], s = s~Join~{i, k}], {i, n}]; s]; f@ 300000 (* Michael De Vlieger, Jul 02 2015 *)
-
PARI
A259180_upto(N, L=List(), s)={ forfactored(n=1, N, (s=sigma(n[2]))>2*n[1] && sigma(s-n[1])==s && listput(L, [n[1], s-n[1]]));concat(L)} \\ M. F. Hasler, Oct 11 2019
Comments