cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 68 results. Next

A328009 Irregular array read by rows in which row n lists the divisors of the n-th term of the sequence of amicable pairs (A259180).

Original entry on oeis.org

1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220, 1, 2, 4, 71, 142, 284, 1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592, 1184, 1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605, 1210, 1, 2, 4, 5, 10, 20, 131, 262, 524, 655, 1310, 2620, 1, 2, 4, 17, 34, 43, 68, 86, 172, 731, 1462, 2924, 1, 2, 4, 5, 10, 20, 251, 502, 1004, 1255
Offset: 1

Views

Author

Omar E. Pol, Oct 01 2019

Keywords

Comments

Row sums give a sequence formed by the terms of A180164 repeated as follows: 504, 504, 2394, 2394, 5544, 5544, ...

Examples

			Array begins:
1, 2, 4,  5,  10,  11,  20,  22,   44,  55,   110,  220;
1, 2, 4, 71, 142, 284;
1, 2, 4,  8,  16,  32,  37,  74,  148,  296,  592, 1184;
1, 2, 5, 10,  11,  22,  55, 110,  121,  242,  605, 1210;
1, 2, 4,  5,  10,  20, 131, 262,  524,  655, 1310, 2620;
1, 2, 4, 17,  34,  43,  68,  86,  172,  731, 1462, 2924;
1, 2, 4,  5,  10,  20, 251, 502, 1004, 1255, 2510, 5020;
1, 2, 4, 13,  26,  52, 107, 214,  428, 1391, 2782, 5564,
1, 2, 4,  8,  19,  38,  41,  76,   82,  152,  164,  328, 779, 1558, 3116, 6232;
1, 2, 4,  8,  16,  32, 199, 398,  796, 1592, 3184, 6368;
...
		

Crossrefs

Right border gives A259180 (amicable pairs).
The length of row n is A328043(n).
Column 1 gives A000012.

Programs

  • Mathematica
    With[{s = Array[{#, DivisorSigma[1, #] - #} &, 6000]}, Flatten@ Divisors@ DeleteDuplicates[Sort /@ Select[Reverse /@ s, And[! FreeQ[s, #], UnsameQ @@ #] &]]] (* Michael De Vlieger, Oct 08 2019 *)

A001065 Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, 21, 46, 1, 66, 17, 64, 23, 32, 1, 108, 1, 34, 41, 63, 19, 78, 1, 58, 27, 74, 1, 123, 1, 40, 49, 64, 19, 90, 1, 106
Offset: 1

Views

Author

Keywords

Comments

Also total number of parts in all partitions of n into equal parts that do not contain 1 as a part. - Omar E. Pol, Jan 16 2013
Related concepts: If a(n) < n, n is said to be deficient, if a(n) > n, n is abundant, and if a(n) = n, n is perfect. If there is a cycle of length 2, so that a(n) = b and a(b) = n, b and n are said to be amicable. If there is a longer cycle, the numbers in the cycle are said to be sociable. See examples. - Juhani Heino, Jul 17 2017
Sum of the smallest parts in the partitions of n into two parts such that the smallest part divides the largest. - Wesley Ivan Hurt, Dec 22 2017
a(n) is also the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that do not contain k as a part (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 23 2019
Fixed points are in A000396. - Alois P. Heinz, Mar 10 2024

Examples

			x^2 + x^3 + 3*x^4 + x^5 + 6*x^6 + x^7 + 7*x^8 + 4*x^9 + 8*x^10 + x^11 + ...
For n = 44, sum of divisors of n = sigma(n) = 84; so a(44) = 84-44 = 40.
Related concepts: (Start)
From 1 to 17, all n are deficient, except 6 and 12 seen below. See A005100.
Abundant numbers: a(12) = 16, a(18) = 21. See A005101.
Perfect numbers: a(6) = 6, a(28) = 28. See A000396.
Amicable numbers: a(220) = 284, a(284) = 220. See A259180.
Sociable numbers: 12496 -> 14288 -> 15472 -> 14536 -> 14264 -> 12496. See A122726. (End)
For n = 10 the sum of the divisors of 10 that are less than 10 is 1 + 2 + 5 = 8. On the other hand, the partitions of 10 into equal parts that do not contain 1 as a part are [10], [5,5], [2,2,2,2,2], there are 8 parts, so a(10) = 8. - _Omar E. Pol_, Nov 24 2019
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • George E. Andrews, Number Theory. New York: Dover, 1994; Pages 1, 75-92; p. 92 #15: Sigma(n) / d(n) >= n^(1/2).
  • Carl Pomerance, The first function and its iterates, pp. 125-138 in Connections in Discrete Mathematics, ed. S. Butler et al., Cambridge, 2018.
  • H. J. J. te Riele, Perfect numbers and aliquot sequences, pp. 77-94 in J. van de Lune, ed., Studieweek "Getaltheorie en Computers", published by Math. Centrum, Amsterdam, Sept. 1980.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 91.

Crossrefs

Least inverse: A070015, A359132.
Values taken: A078923, values not taken: A005114.
Records: A034090, A034091.
First differences: A053246, partial sums: A153485.
a(n) = n - A033879(n) = n + A033880(n). - Omar E. Pol, Dec 30 2013
Row sums of A141846 and of A176891. - Gary W. Adamson, May 02 2010
Row sums of A176079. - Mats Granvik, May 20 2012
Alternating row sums of A231347. - Omar E. Pol, Jan 02 2014
a(n) = sum (A027751(n,k): k = 1..A000005(n)-1). - Reinhard Zumkeller, Apr 05 2013
For n > 1: a(n) = A240698(n,A000005(n)-1). - Reinhard Zumkeller, Apr 10 2014
A134675(n) = A007434(n) + a(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015
Cf. A037020 (primes), A053868, A053869 (odd and even terms).
Cf. A048138 (number of occurrences), A238895, A238896 (record values thereof).
Cf. A007956 (products of proper divisors).
Cf. A005100, A005101, A000396, A259180, A122726 (related concepts).

Programs

  • Haskell
    a001065 n = a000203 n - n  -- Reinhard Zumkeller, Sep 15 2011
    
  • Magma
    [SumOfDivisors(n)-n: n in [1..100]]; // Vincenzo Librandi, May 06 2015
    
  • Maple
    A001065 := proc(n)
        numtheory[sigma](n)-n ;
    end proc:
    seq( A001065(n),n=1..100) ;
  • Mathematica
    Table[ Plus @@ Select[ Divisors[ n ], #Zak Seidov, Sep 10 2009 *)
    Table[DivisorSigma[1, n] - n, {n, 1, 80}] (* Jean-François Alcover, Apr 25 2013 *)
    Array[Plus @@ Most@ Divisors@# &, 80] (* Robert G. Wilson v, Dec 24 2017 *)
  • MuPAD
    numlib::sigma(n)-n$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n==0, 0, sigma(n) - n)} /* Michael Somos, Sep 20 2011 */
    
  • Python
    from sympy import divisor_sigma
    def A001065(n): return divisor_sigma(n)-n # Chai Wah Wu, Nov 04 2022
    
  • Sage
    [sigma(n, 1)-n for n in range(1, 81)] # Stefano Spezia, Jul 14 2025

Formula

G.f.: Sum_{k>0} k * x^(2*k)/(1 - x^k). - Michael Somos, Jul 05 2006
a(n) = sigma(n) - n = A000203(n) - n. - Lekraj Beedassy, Jun 02 2005
a(n) = A155085(-n). - Michael Somos, Sep 20 2011
Equals inverse Mobius transform of A051953 = A051731 * A051953. Example: a(6) = 6 = (1, 1, 1, 0, 0, 1) dot (0, 1, 1, 2, 1, 4) = (0 + 1 + 1 + 0 + 0 + 4), where A051953 = (0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, ...) and (1, 1, 1, 0, 0, 1) = row 6 of A051731 where the 1's positions indicate the factors of 6. - Gary W. Adamson, Jul 11 2008
a(n) = A006128(n) - A220477(n) - n. - Omar E. Pol Jan 17 2013
a(n) = Sum_{i=1..floor(n/2)} i*(1-ceiling(frac(n/i))). - Wesley Ivan Hurt, Oct 25 2013
Dirichlet g.f.: zeta(s-1)*(zeta(s) - 1). - Ilya Gutkovskiy, Aug 07 2016
a(n) = 1 + A048050(n), n > 1. - R. J. Mathar, Mar 13 2018
Erdős (Elem. Math. 28 (1973), 83-86) shows that the density of even integers in the range of a(n) is strictly less than 1/2. The argument of Coppersmith (1987) shows that the range of a(n) has density at most 47/48 < 1. - N. J. A. Sloane, Dec 21 2019
G.f.: Sum_{k >= 2} x^k/(1 - x^k)^2. Cf. A296955. (This follows from the fact that if g(z) = Sum_{n >= 1} a(n)*z^n and f(z) = Sum_{n >= 1} a(n)*z^(N*n)/(1 - z^n) then f(z) = Sum_{k >= N} g(z^k), taking a(n) = n and N = 2.) - Peter Bala, Jan 13 2021
Faster converging g.f.: Sum_{n >= 1} q^(n*(n+1))*(n*q^(3*n+2) - (n + 1)*q^(2*n+1) - (n - 1)*q^(n+1) + n)/((1 - q^n)*(1 - q^(n+1))^2). (In equation 1 in Arndt, after combining the two n = 0 summands to get -t/(1 - t), apply the operator t*d/dt to the resulting equation and then set t = q and x = 1.) - Peter Bala, Jan 22 2021
a(n) = Sum_{d|n} d * (1 - [n = d]), where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
a(n) = Sum_{i=1..n} ((n-1) mod i) - (n mod i). [See also A176079.] - José de Jesús Camacho Medina, Feb 23 2021

A063990 Amicable numbers.

Original entry on oeis.org

220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 10744, 10856, 12285, 14595, 17296, 18416, 63020, 66928, 66992, 67095, 69615, 71145, 76084, 79750, 87633, 88730, 100485, 122265, 122368, 123152, 124155, 139815, 141664, 142310
Offset: 1

Views

Author

N. J. A. Sloane, Sep 18 2001

Keywords

Comments

A pair of numbers x and y is called amicable if the sum of the proper divisors of either one is equal to the other. The smallest pair is x = 220, y = 284.
The sequence lists the amicable numbers in increasing order. Note that the pairs x, y are not adjacent to each other in the list. See also A002025 for the x's, A002046 for the y's.
Theorem: If the three numbers p = 3*(2^(n-1)) - 1, q = 3*(2^n) - 1 and r = 9*(2^(2n-1)) - 1 are all prime where n >= 2, then p*q*(2^n) and r*(2^n) are amicable numbers. This 9th century theorem is due to Thabit ibn Kurrah (see for example, the History of Mathematics by David M. Burton, 6th ed., p. 510). - Mohammad K. Azarian, May 19 2008
The first time a pair ordered by its first element is not adjacent is x = 63020, y = 76084 which correspond to a(17) and a(23), respectively. - Omar E. Pol, Jun 22 2015
For amicable pairs see A259180 and also A259933. First differs from A259180 (amicable pairs) at a(18). - Omar E. Pol, Jun 01 2017
Sierpiński (1964), page 176, mentions Erdős's work on the number of pairs of amicable numbers <= x. - N. J. A. Sloane, Dec 27 2017
Kanold (1954) proved that the asymptotic upper density of amicable numbers is < 0.204 and Erdős (1955) proved that it is 0. - Amiram Eldar, Feb 13 2021

References

  • Scott T. Cohen, Mathematical Buds, Ed. Harry D. Ruderman, Vol. 1, Chap. VIII, pp. 103-126, Mu Alpha Theta, 1984.
  • Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 90.
  • Wacław Sierpiński, Elementary Theory of Numbers, Panst. Wyd. Nauk, Warsaw, 1964.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 137-141.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 145-147.

Crossrefs

Union of A002025 and A002046.
A180164 (gives for each pair (x, y) the value x+y = sigma(x)+sigma(y)).
Cf. A259180.

Programs

  • Maple
    F:= proc(t) option remember; numtheory:-sigma(t)-t end proc:
    select(t -> F(t) <> t and F(F(t))=t, [$1.. 200000]); # Robert Israel, Jun 22 2015
  • Mathematica
    s[n_] := DivisorSigma[1, n] - n; AmicableNumberQ[n_] := If[Nest[s, n, 2] == n && ! s[n] == n, True, False]; Select[Range[10^6], AmicableNumberQ[ # ] &] (* Ant King, Jan 02 2007 *)
    Select[Tally[Sort/@Table[{n,DivisorSigma[1,n]-n},{n,200000}]],#[[2]]==2&][[;;,1]]//Flatten//Sort (* Harvey P. Dale, Jan 13 2025 *)
  • PARI
    aliquot(n)=sigma(n)-n
    isA063990(n)={if (n>1, local(a);a=aliquot(n);a<>n && aliquot(a)==n)} \\ Michael B. Porter, Apr 13 2010
    
  • Python
    from sympy import divisors
    A063990 = [n for n in range(1,10**5) if sum(divisors(n))-2*n and not sum(divisors(sum(divisors(n))-n))-sum(divisors(n))] # Chai Wah Wu, Aug 14 2014

Formula

Pomerance shows that there are at most x/exp(sqrt(log x log log log x)/(2 + o(1))) terms up to x for sufficiently large x. - Charles R Greathouse IV, Jul 21 2015
Sum_{n>=1} 1/a(n) is in the interval (0.0119841556, 215) (Nguyen and Pomerance, 2019; an upper bound 6.56*10^8 was given by Bayless and Klyve, 2011). - Amiram Eldar, Oct 15 2020

A002025 Smaller of an amicable pair: (a,b) such that sigma(a) = sigma(b) = a+b, a < b.

Original entry on oeis.org

220, 1184, 2620, 5020, 6232, 10744, 12285, 17296, 63020, 66928, 67095, 69615, 79750, 100485, 122265, 122368, 141664, 142310, 171856, 176272, 185368, 196724, 280540, 308620, 319550, 356408, 437456, 469028, 503056, 522405, 600392, 609928
Offset: 1

Views

Author

Keywords

Comments

Sometimes called friendly numbers, but this usage is deprecated.
All terms are abundant (A005101). - Michel Marcus, Mar 10 2013
See A125490-A125492 and A137231 for amicable triples, A036471-A036474 and A116148 for amicable quadruples, and A233553 for amicable quintuples. - M. F. Hasler, Dec 14 2013
This sequence is strictly increasing (and A002046, which contains the larger (deficient) number in each pair, is sorted by this sequence). - Jeppe Stig Nielsen, Jan 27 2015
For the related amicable pairs see A259180. - Omar E. Pol, Jul 15 2015
Pomerance (1981) shows that there are at most x*exp(-log(x)^(1/3)) terms of this sequence up to x. In particular, as originally demonstrated by Erdős, this sequence has density 0. - Charles R Greathouse IV, Aug 17 2017

References

  • Mariano Garcia, Jan Munch Pedersen and Herman te Riele, Amicable pairs - a survey, pp. 179-196 in: Alf van der Poorten and Andres Stein (eds.), High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, Fields Institute Communications, AMS, Providence RI, 2004.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 48-49.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 10^6, n++, If[(s = DivisorSigma[1, n]) > 2n && DivisorSigma[1, s - n] == s, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 09 2015, after M. F. Hasler *)
  • PARI
    aliquot(n)=sigma(n)-n
    isA002025(n)={if (n>1, local(a);a=aliquot(n);a>n && aliquot(a)==n)} \\ Michael B. Porter, Apr 11 2010
    
  • PARI
    for(n=1,1e6,(s=sigma(n))>2*n && sigma(s-n)==s && print1(n",")) \\ M. F. Hasler, Dec 14 2013
    
  • PARI
    forfactored(n=1,10^6, t=sigma(n[2])-n[1]; if(t>n[1] && sigma(t)==n[1]+t, print1(n[1]", "))) \\ Charles R Greathouse IV, Aug 17 2017

Formula

a(n) = A259180(2n-1) = A180164(n) - A259180(2n) = A180164(n) - A002046(n). - Omar E. Pol, Jul 15 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 24 2000

A002046 Larger of amicable pair.

Original entry on oeis.org

284, 1210, 2924, 5564, 6368, 10856, 14595, 18416, 76084, 66992, 71145, 87633, 88730, 124155, 139815, 123152, 153176, 168730, 176336, 180848, 203432, 202444, 365084, 389924, 430402, 399592, 455344, 486178, 514736, 525915, 669688, 686072
Offset: 1

Views

Author

Keywords

Comments

The elements 76084, 123152, etc. are intentionally out of numerical order so that a(n) and A002025(n) form amicable pairs. - Michael B. Porter, Apr 17 2010
All terms are deficient (A005100). - Michel Marcus, Mar 10 2013
For the related amicable pairs see A259180. - Omar E. Pol, Jul 15 2015

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • For additional references see A002025.

Crossrefs

Programs

  • Maple
    f:= proc(t) uses numtheory; local s;
      s:= sigma(t) - t; s > t and sigma(s) - s = t
    end proc;
    Am1:= select(f,[$1..10^6]);
    map(numtheory:-sigma,Am1); # Robert Israel, Jul 16 2015
  • Mathematica
    amicableQ[n_] := With[{s = DivisorSigma[1, n] - n}, r = n != s && n == DivisorSigma[1, s] - s; If[r, mate[n] = s; True, False]]; mate /@ Select[ Range[lim], amicableQ[#] && # < mate[#] &] (* Jean-François Alcover, Sep 20 2011 *)
    Table[DivisorSigma[1, A002025[n]] - A002025[n], {n, 50}] (* T. D. Noe, Sep 20 2011 *)
  • PARI
    aliquot(n)=sigma(n)-n
    isA002046(n)={if (n>1, local(a);a=aliquot(n);aMichael B. Porter, Apr 17 2010

Formula

a(n) = A259180(2n) = A180164(n) - A259180(2n-1) = A180164(n) - A002025(n). - Omar E. Pol, Jul 15 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 25 2000

A259933 Amicable pairs (x < y) ordered by nondecreasing sum (x + y) and then by increasing x.

Original entry on oeis.org

220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 10744, 10856, 12285, 14595, 17296, 18416, 66928, 66992, 67095, 71145, 63020, 76084, 69615, 87633, 79750, 88730, 100485, 124155, 122368, 123152, 122265, 139815, 141664, 153176, 142310, 168730, 171856, 176336, 176272, 180848, 185368, 203432, 196724, 202444, 280540, 365084, 308620, 389924
Offset: 1

Views

Author

Omar E. Pol, Jul 09 2015

Keywords

Comments

A pair of numbers x and y is called amicable if the sum of the proper divisors (or aliquot parts) of either one is equal to the other.
By definition a property of the amicable pair (x, y) is that x + y = sigma(x) = sigma(y).
The amicable pairs (x < y) are adjacent to each other in the list.
Also A260086 and A260087 interleaved.
Another version (A259180) lists the amicable pairs (x < y) ordered by increasing x.
Amicable numbers A063990 are the terms of this sequence in increasing order.
First differs from both A063990 and A259180 at a(17).

Examples

			-----------------------------------
       Amicable pair         Sum
          x      y          x + y
-----------------------------------
n     A260086 A260087      A259953
-----------------------------------
1        220     284          504
2       1184    1210         2394
3       2620    2924         5544
4       5020    5564        10584
5       6232    6368        12600
6      10744   10856        21600
7      12285   14595        26880
8      17296   18416        35712
9      66928   66992       133920
10     67095   71145       138240
11     63020   76084       139104
12     69615   87633       157248
...      ...     ...          ...
32    609928  686072      1296000
33    643336  652664      1296000
...
The sum of the proper divisors (or aliquot parts) of 220 is 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284. On the other hand the sum of the proper divisors (or aliquot parts) of 284 is 1 + 2 + 4 + 71 + 142 = 220. Note that 220 + 284 = sigma(220) = sigma(284) = 504. The sum 220 + 284 = 504 is the smallest sum of an amicable pair, so a(1) = 220 and a(2) = 284.
Note that some pairs (x, y) share the same sum (x + y), for example: (609928 + 686072) = (643336 + 652664) = sigma(609928) = sigma(686072) = sigma(643336) = sigma(652664) = 1296000, thus in the list first appears the pair (609928, 686072) and then (643336, 652664) because 609928 < 643336.
		

Crossrefs

Formula

a(2n-1) + a(2n) = A000203(a(2n-1)) = A000203(a(2n)) = A259953(n).

A180164 The sum of the two numbers in an amicable pair, A002025(n) + A002046(n).

Original entry on oeis.org

504, 2394, 5544, 10584, 12600, 21600, 26880, 35712, 139104, 133920, 138240, 157248, 168480, 224640, 262080, 245520, 294840, 311040, 348192, 357120, 388800, 399168, 645624, 698544, 749952, 756000, 892800, 955206, 1017792, 1048320
Offset: 1

Views

Author

T. D. Noe, Aug 14 2010

Keywords

Comments

This sequence initially shares many terms with A161005 because small amicable pairs are sometimes consecutive terms in the sorted list of amicable numbers, A063990.
This sequence is sorted by the smaller (abundant) member from A002025, so a(n) is not increasing. - Jeppe Stig Nielsen, Jan 27 2015
Duplicates occur, e.g., a(32)=a(35)=1296000. - Jeppe Stig Nielsen, Jan 27 2015
Comment originally by M. F. Hasler, Dec 14 2013, in A161005: "Also: The common value of sigma(a) = sigma(b) of the amicable pairs (a,b). See A137231 for the analog for amicable triples, and A116148 for quadruples." - Jeppe Stig Nielsen, Jan 27 2015
It is not known if a(n) is always even (see Hagis links). - Jeppe Stig Nielsen, Jan 31 2015
Are all terms abundant (A005101)? The first 10000 terms are. - Ivan N. Ianakiev, Apr 15 2021

Examples

			a(9) = A002025(9) + A002046(9) = 63020 + 76084 = 139104.
		

Crossrefs

Cf. A002025, A002046, A066539, A259180 (amicable pairs).

Programs

  • Mathematica
    s[n_] := DivisorSigma[1,n]-n; smallAmicableQ[n_] := Module[{b=s[n]}, n
    				

Formula

a(n) = A259180(2n-1) + A259180(2n). - Omar E. Pol, Oct 22 2017

A066539 Difference between larger and smaller terms of n-th amicable pair.

Original entry on oeis.org

64, 26, 304, 544, 136, 112, 2310, 1120, 13064, 64, 4050, 18018, 8980, 23670, 17550, 784, 11512, 26420, 4480, 4576, 18064, 5720, 84544, 81304, 110852, 43184, 17888, 17150, 11680, 3510, 69296, 76144, 67072, 76592, 9328, 115592, 70592, 61110, 21712
Offset: 1

Author

Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 06 2002

Keywords

Comments

Values are sorted along increasing A002025. - R. J. Mathar, Jul 19 2009, Jul 23 2009

Examples

			a(7) = 2310 because the 7th pair of amicable numbers is 12285 and 14595; and 14595 - 12285 = 2310.
		

References

Crossrefs

Cf. A002025, A002046, A063990, A259180 (amicable pairs).

Programs

  • Mathematica
    With[{s = PositionIndex@Array[DivisorSigma[1, #] &, 10^6]}, Flatten@ Map[Differences, Apply[Join, Map[Function[n, Select[Subsets[Lookup[s, n], {2}], Total@ # == n &]], Sort@ Select[Keys@ s, Length@ Lookup[s, #] > 1 &]]]]] (* Michael De Vlieger, Oct 22 2017 *)

Formula

a(n) = A002046(n) - A002025(n).
a(n) = A259180(2n) - A259180(2n-1). - Omar E. Pol, Oct 22 2017

Extensions

Sorted on smaller term for alignment with A002046 and A002025. - R. J. Mathar, Jul 19 2009
A-number in comment corrected by R. J. Mathar, Jul 23 2009

A161005 Sums of adjacent amicable numbers, a(n) = A063990(2n-1) + A063990(2n).

Original entry on oeis.org

504, 2394, 5544, 10584, 12600, 21600, 26880, 35712, 129948, 134087, 140760, 155834, 176363, 222750, 245520, 263970, 283974, 321906, 348128, 357184, 382092, 405876, 589160, 675958, 755008, 829994, 892800, 955206, 1017792, 1048320
Offset: 1

Author

Claudio Meller, Jun 01 2009

Keywords

Comments

Warning: The numbers being summed will not always belong to the same amicable pair. See A180164 for the sums of amicable pairs. - Jeppe Stig Nielsen, Jan 27 2015

Examples

			a(1) = 504 = 220 + 284.
a(2) = 2394 = 1184 + 1210.
a(3) = 5544 = 2620 + 2694.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, n] - n;
    AmicableNumberQ[n_] := If[Nest[s, n, 2] == n && ! s[n] == n, True, False];
    a = Select[Range[10^6], AmicableNumberQ[ # ] &];
    Table[a[[n + 1]] + a[[n]], {n, 1, Length[a], 2}]
    (* Roger L. Bagula, May 29 2010, based on Ant King's Mathematica program from A063990 *)

Extensions

Corrected and extended by Roger L. Bagula, May 29 2010
Edited by N. J. A. Sloane, Aug 14 2010, at the suggestion of Jason G. Wurtzel

A328043 Number of divisors of the amicable pairs.

Original entry on oeis.org

12, 6, 12, 12, 12, 12, 12, 12, 16, 12, 16, 16, 32, 16, 20, 10, 24, 12, 20, 20, 32, 32, 48, 24, 32, 16, 48, 24, 48, 24, 20, 20, 24, 16, 32, 16, 20, 20, 20, 20, 32, 16, 24, 24, 36, 12, 24, 12, 48, 16, 32, 16, 20, 20, 18, 36, 20, 20, 48, 48, 32, 16, 32, 16, 32, 16, 32, 16, 32, 16, 48, 24, 32, 16, 48, 32, 24, 20
Offset: 1

Author

Omar E. Pol, Oct 02 2019

Keywords

Examples

			Consider the first amicable pair [220, 284]. The smaller member has 12 divisors, they are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220. The larger member has 6 divisors, they are 1, 2, 4, 71, 142, 284. So a(1) = 12 and a(2) = 6.
		

Crossrefs

Row lengths of A328009.

Programs

  • Mathematica
    With[{s = Array[{#, DivisorSigma[1, #] - #} &, 10^5]}, DivisorSigma[0, #] &@ Flatten@ DeleteDuplicates[Sort /@ Select[Reverse /@ s, And[! FreeQ[s, #], UnsameQ @@ #] &]]] (* Michael De Vlieger, Oct 08 2019 *)

Formula

a(n) = A000005(A259180(n)).
Showing 1-10 of 68 results. Next