cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A036474 Amicable quadruples: the numbers d referred to in A036471.

Original entry on oeis.org

3834000, 4240800, 5089392, 5666760, 6939360, 7142100, 7932240, 8076960, 7976160, 8122464, 7738080, 7738920, 8136240, 8136240, 9121680, 9312480, 9368520, 9143820, 10159800, 10260180, 10403820, 10455984, 11179980, 10473120, 10930320, 10794960
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A002025, A002046 and A161005 for amicable pairs.
Cf. A125490 - A125492 and A137231 for amicable triples.
Cf. A233553 for amicable quintuples.

Extensions

The present first term was found by Dean Hickerson, Nov 06 2006.
That this is the first term was confirmed by Giovanni Resta, Nov 14 2006, who also found a(2)-a(18).
Edited by N. J. A. Sloane, Nov 07 2006 and Nov 27 2006

A180164 The sum of the two numbers in an amicable pair, A002025(n) + A002046(n).

Original entry on oeis.org

504, 2394, 5544, 10584, 12600, 21600, 26880, 35712, 139104, 133920, 138240, 157248, 168480, 224640, 262080, 245520, 294840, 311040, 348192, 357120, 388800, 399168, 645624, 698544, 749952, 756000, 892800, 955206, 1017792, 1048320
Offset: 1

Views

Author

T. D. Noe, Aug 14 2010

Keywords

Comments

This sequence initially shares many terms with A161005 because small amicable pairs are sometimes consecutive terms in the sorted list of amicable numbers, A063990.
This sequence is sorted by the smaller (abundant) member from A002025, so a(n) is not increasing. - Jeppe Stig Nielsen, Jan 27 2015
Duplicates occur, e.g., a(32)=a(35)=1296000. - Jeppe Stig Nielsen, Jan 27 2015
Comment originally by M. F. Hasler, Dec 14 2013, in A161005: "Also: The common value of sigma(a) = sigma(b) of the amicable pairs (a,b). See A137231 for the analog for amicable triples, and A116148 for quadruples." - Jeppe Stig Nielsen, Jan 27 2015
It is not known if a(n) is always even (see Hagis links). - Jeppe Stig Nielsen, Jan 31 2015
Are all terms abundant (A005101)? The first 10000 terms are. - Ivan N. Ianakiev, Apr 15 2021

Examples

			a(9) = A002025(9) + A002046(9) = 63020 + 76084 = 139104.
		

Crossrefs

Cf. A002025, A002046, A066539, A259180 (amicable pairs).

Programs

  • Mathematica
    s[n_] := DivisorSigma[1,n]-n; smallAmicableQ[n_] := Module[{b=s[n]}, n
    				

Formula

a(n) = A259180(2n-1) + A259180(2n). - Omar E. Pol, Oct 22 2017

A259953 The sum (in nondecreasing order) of the two numbers in an amicable pair.

Original entry on oeis.org

504, 2394, 5544, 10584, 12600, 21600, 26880, 35712, 133920, 138240, 139104, 157248, 168480, 224640, 245520, 262080, 294840, 311040, 348192, 357120, 388800, 399168, 645624, 698544, 749952, 756000, 892800, 955206, 1017792, 1048320, 1270080, 1296000, 1296000, 1315440, 1347840, 1451520, 1522800, 1666560, 1781136, 1879200, 2041200
Offset: 1

Author

Omar E. Pol, Jul 10 2015

Keywords

Comments

Also the common value of sigma(x) = sigma(y) of the amicable pairs (x < y) ordered by nondecreasing sum (x + y). See A259933.
Duplicates occur, e.g., a(32) = a(33) = 1296000.
Another version of A180164.
First differs from both A161005 and A180164 at a(9).

Examples

			------------------------------------------
      A m i c a b l e   p a i r      Sum
------------------------------------------
n     A260086(n)  +  A260087(n)  =   a(n)
------------------------------------------
1         220            284          504
2        1184           1210         2394
3        2620           2924         5544
4        5020           5564        10584
5        6232           6368        12600
6       10744          10856        21600
7       12285          14595        26880
8       17296          18416        35712
9       66928          66992       133920
10      67095          71145       138240
11      63020          76084       139104
12      69615          87633       157248
...       ...            ...          ...
32     609928         686072      1296000
33     643336         652664      1296000
...
		

Formula

a(n) = A259933(2n-1) + A259933(2n) = A260086(n) + A260087(n).

A180163 Products of pairs of amicable numbers (see A063990).

Original entry on oeis.org

62480, 1432640, 7660880, 27931280, 39685376, 116636864, 179299575, 318523136, 4217802560, 4494828240, 4952759175, 6067699000, 7775676090, 12285798525, 15069863936, 17358731325, 20160203840, 25845386480, 30293400832
Offset: 1

Author

Jonathan Vos Post, Aug 14 2010

Keywords

Comments

For a more reasonable sequence, in which both factors always belong to the same amicable pair, see A180202, which first differs from this sequence at a(9). - Omar E. Pol, Oct 25 2017

Examples

			a(1) = 220 * 284 = 62480 = 2^4 * 5 * 11 * 71.
a(2) = 1184 * 1210 = 1432640 = 2^6 * 5 * 11^2 * 37.
		

Formula

a(n) = A063990(2*n-1) * A063990(2*n).

A179612 Sums of pairs of betrothed (or quasi-amicable) numbers.

Original entry on oeis.org

123, 335, 2975, 3223, 4319, 11903, 25479, 30239, 138239, 393119, 416639, 508895, 773759, 861839, 1071359, 1391039, 1645055, 2903039, 2413151, 2298239, 2903039, 2515199, 2557439, 2757887, 2695679, 3856895, 4147199, 4717439, 4245695, 4561919, 5391359, 5322239
Offset: 1

Author

Jonathan Vos Post, Jan 08 2011

Keywords

Comments

This is to A161005 sums of pairs of amicable numbers as betrothed (or quasi-amicable) numbers A005276 are to A063990 amicable numbers. The subsequence of primes begins: 11903, 138239, 1071359.

Examples

			a(1) = 48 + 75 = 123 = 3 * 41.
a(2) = 140 + 195 = 335 = 5 * 67.
a(6) = 5775 + 6128 = 11903 is the smallest prime in these pair-sums.
		

Formula

a(n) = A003502(n) + A003503(n). {(j + k) such that sigma(j)=sigma(k)=j+k+1, where sigma=A000203}.

Extensions

More terms from Amiram Eldar, Jan 27 2019

A180277 a(n) = A002952(n) + A002953(n).

Original entry on oeis.org

240, 2400, 40320, 72576, 94080, 120960, 141120, 311040, 403200, 483840, 483840, 725760, 673920, 1010880, 1209600, 1497600, 1411200, 1612800, 1747200, 2246400, 2177280, 2371200, 2449440, 2419200, 2620800, 2903040, 3144960, 3110400
Offset: 1

Author

Jonathan Vos Post, Aug 23 2010

Keywords

Examples

			a(1) = 114 + 126 = 240 = 2^4 * 3 * 5.
a(2) = 1140 + 1260 = 2400 = 2^5 * 3 * 5^2.
a(10) = a(11) - why?
		

Crossrefs

Formula

a(n) = A002952(n) + A002953(n).
{(j+k) such that sigma*(j) = sigma*(k) = j+k, where sigma*(n) is the unitary divisor function A034448}.

Extensions

Extended by R. J. Mathar, Aug 26 2010
Shorter name using given formula from Joerg Arndt, Jul 29 2024

A233626 Least member of an amicable n-tuple: (x[1],...,x[n]) such that sigma(x[1])=...=sigma(x[n])=x[1]+...+x[n], x[i]

Original entry on oeis.org

1, 220, 1980, 3270960, 53542288800
Offset: 1

Author

M. F. Hasler, Dec 12 2013

Keywords

Comments

Some authors use other definitions for amicable k-tuples, cf. link to MathWorld.

Crossrefs

Cf. A002025, A002046 and A161005 for amicable pairs.
Cf. A125490 - A125492 and A137231 for amicable triples.
Cf. A036471 - A036474 and A116148 for amicable quadruples.
Cf. A233553 for amicable quintuples.

A233538 Triangle T(n,k) read by rows, which contains for 1<=k<=n the least amicable n-tuple T(n,1),..., T(n,n) such that sigma(T(n,k)) = T(n,1)+...+T(n,n).

Original entry on oeis.org

1, 220, 284, 1980, 2016, 2556, 3270960, 3361680, 3461040, 3834000, 53542288800, 59509850400, 59999219280, 60074174160, 61695597600
Offset: 1

Author

Michel Marcus, M. F. Hasler, Dec 11 2013

Keywords

Comments

Like amicable pairs, amicable n-tuples can be regular or irregular (see Pedersen link). The first amicable pair is regular. Then the first n-tuples are irregular.
For n=3 to 5, the first regular n-tuples are: [230880, 267168, 306336], [6966960, 7054320, 7840560, 8136240], [55766707476480, 56992185169920, 57515254917120, 57754372515840, 57829096765440].
On the other hand, for n>2, a n-tuple can be "very" irregular, that is, when the values of sigma(n-tuple[i]/GCD(n-tuple)) are all different. The first such n-tuples are [21168, 22200, 27312], [3767400, 4090320, 4150440, 4240800].
When n=2, irregular and "very irregular" is the same thing. The first irregular amicable pair is (1184, 1210) (see difference between A002025 and A215491).
Regular n-tuples can be found with the method described in the second Kohmoto link. Then it is eventually possible to derive another n-tuple using the same "seed". For this, it suffices to find an integer g' such that sigma(g')/g' = sigma(g)/g and coprime to the terms of the n-tuple divided by g.
The 6th row is smaller than (379952828833009557565440000, 387198605857900590673920000, 388674597474082097418240000, 388808778530098598031360000, 389307165309588457451520000, 393332596990083475845120000).

Examples

			Triangle begins:
1;
220, 284;                                 i.e. A002025(1), A002046(1).
1980, 2016, 2556;                         i.e. A125490(1), A125491(1), A125492(1).
3270960, 3361680, 3461040, 3834000;
53542288800, 59509850400, 59999219280, 60074174160, 61695597600.
		

Crossrefs

Cf. A233626 (first column).
Cf. A002025, A002046, A161005, (amicable pairs).
Cf. A125490 - A125492, A137231, (amicable triples).
Cf. A036471 - A036474, A116148, (amicable quadruples).
Cf. A233553, A233626 (first row).
Showing 1-8 of 8 results.