cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A233538 Triangle T(n,k) read by rows, which contains for 1<=k<=n the least amicable n-tuple T(n,1),..., T(n,n) such that sigma(T(n,k)) = T(n,1)+...+T(n,n).

Original entry on oeis.org

1, 220, 284, 1980, 2016, 2556, 3270960, 3361680, 3461040, 3834000, 53542288800, 59509850400, 59999219280, 60074174160, 61695597600
Offset: 1

Views

Author

Michel Marcus, M. F. Hasler, Dec 11 2013

Keywords

Comments

Like amicable pairs, amicable n-tuples can be regular or irregular (see Pedersen link). The first amicable pair is regular. Then the first n-tuples are irregular.
For n=3 to 5, the first regular n-tuples are: [230880, 267168, 306336], [6966960, 7054320, 7840560, 8136240], [55766707476480, 56992185169920, 57515254917120, 57754372515840, 57829096765440].
On the other hand, for n>2, a n-tuple can be "very" irregular, that is, when the values of sigma(n-tuple[i]/GCD(n-tuple)) are all different. The first such n-tuples are [21168, 22200, 27312], [3767400, 4090320, 4150440, 4240800].
When n=2, irregular and "very irregular" is the same thing. The first irregular amicable pair is (1184, 1210) (see difference between A002025 and A215491).
Regular n-tuples can be found with the method described in the second Kohmoto link. Then it is eventually possible to derive another n-tuple using the same "seed". For this, it suffices to find an integer g' such that sigma(g')/g' = sigma(g)/g and coprime to the terms of the n-tuple divided by g.
The 6th row is smaller than (379952828833009557565440000, 387198605857900590673920000, 388674597474082097418240000, 388808778530098598031360000, 389307165309588457451520000, 393332596990083475845120000).

Examples

			Triangle begins:
1;
220, 284;                                 i.e. A002025(1), A002046(1).
1980, 2016, 2556;                         i.e. A125490(1), A125491(1), A125492(1).
3270960, 3361680, 3461040, 3834000;
53542288800, 59509850400, 59999219280, 60074174160, 61695597600.
		

Crossrefs

Cf. A233626 (first column).
Cf. A002025, A002046, A161005, (amicable pairs).
Cf. A125490 - A125492, A137231, (amicable triples).
Cf. A036471 - A036474, A116148, (amicable quadruples).
Cf. A233553, A233626 (first row).
Showing 1-1 of 1 results.