cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 133 results. Next

A161005 Sums of adjacent amicable numbers, a(n) = A063990(2n-1) + A063990(2n).

Original entry on oeis.org

504, 2394, 5544, 10584, 12600, 21600, 26880, 35712, 129948, 134087, 140760, 155834, 176363, 222750, 245520, 263970, 283974, 321906, 348128, 357184, 382092, 405876, 589160, 675958, 755008, 829994, 892800, 955206, 1017792, 1048320
Offset: 1

Views

Author

Claudio Meller, Jun 01 2009

Keywords

Comments

Warning: The numbers being summed will not always belong to the same amicable pair. See A180164 for the sums of amicable pairs. - Jeppe Stig Nielsen, Jan 27 2015

Examples

			a(1) = 504 = 220 + 284.
a(2) = 2394 = 1184 + 1210.
a(3) = 5544 = 2620 + 2694.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, n] - n;
    AmicableNumberQ[n_] := If[Nest[s, n, 2] == n && ! s[n] == n, True, False];
    a = Select[Range[10^6], AmicableNumberQ[ # ] &];
    Table[a[[n + 1]] + a[[n]], {n, 1, Length[a], 2}]
    (* Roger L. Bagula, May 29 2010, based on Ant King's Mathematica program from A063990 *)

Extensions

Corrected and extended by Roger L. Bagula, May 29 2010
Edited by N. J. A. Sloane, Aug 14 2010, at the suggestion of Jason G. Wurtzel

A180163 Products of pairs of amicable numbers (see A063990).

Original entry on oeis.org

62480, 1432640, 7660880, 27931280, 39685376, 116636864, 179299575, 318523136, 4217802560, 4494828240, 4952759175, 6067699000, 7775676090, 12285798525, 15069863936, 17358731325, 20160203840, 25845386480, 30293400832
Offset: 1

Views

Author

Jonathan Vos Post, Aug 14 2010

Keywords

Comments

For a more reasonable sequence, in which both factors always belong to the same amicable pair, see A180202, which first differs from this sequence at a(9). - Omar E. Pol, Oct 25 2017

Examples

			a(1) = 220 * 284 = 62480 = 2^4 * 5 * 11 * 71.
a(2) = 1184 * 1210 = 1432640 = 2^6 * 5 * 11^2 * 37.
		

Crossrefs

Formula

a(n) = A063990(2*n-1) * A063990(2*n).

A178542 Difference A063990(2n)-A063990(2n-1) between amicable numbers.

Original entry on oeis.org

64, 26, 304, 544, 136, 112, 2310, 1120, 3908, 103, 1530, 3666, 1097, 21780, 784, 15660, 646, 15554, 4416, 4512, 11356, 988, 28080, 36858, 24840, 30810, 17888, 17150, 11680, 3510, 9536, 11440, 9328, 1724, 5184, 13888, 13140, 61110, 18504
Offset: 1

Views

Author

Roger L. Bagula, May 29 2010

Keywords

Comments

Note that these are not differences between two members of amicable pairs
(see A066539) because A063990 is sorted and may separate pairs of amicable numbers.

Crossrefs

Cf. A063990.

Programs

  • Mathematica
    (*A063990 Amicable numbers.*);
    s[n_] := DivisorSigma[1, n] - n;
    AmicableNumberQ[n_] := If[Nest[s, n, 2] == n && ! s[n] == n, True, False];
    a = Select[Range[10^6], AmicableNumberQ[ # ] &];
    Table[a[[n + 1]] - a[[n]], {n, 1, Length[a], 2}]

Extensions

Formula clarified by the Assoc. Eds. of the OEIS - Jun 07 2010

A306613 First differences of A063990 (amicable numbers arranged in increasing order).

Original entry on oeis.org

64, 900, 26, 1410, 304, 2096, 544, 668, 136, 4376, 112, 1429, 2310, 2701, 1120, 44604, 3908, 64, 103, 2520, 1530, 4939, 3666, 7883, 1097, 11755, 21780, 103, 784, 1003, 15660, 1849, 646, 10866, 15554, 3126, 4416, 64, 4512, 4520, 11356, 5720, 988, 77108, 28080, 10930
Offset: 1

Views

Author

Conor Coons, Feb 28 2019

Keywords

Comments

a(n) is the difference between the n-th and (n+1)-th amicable numbers when ordered by increasing value.
For 1 <= k <= 8, a(2k-1) is the difference between the larger and the smaller terms of the k-th amicable pair, and for 1 <= k <= 8, a(2k) is the difference between the smaller term of the (k+1)-th pair and the larger term of the k-th pair. Beginning with the 9th pair (63020,76084), the pairs ordered by their first element are no longer adjacent. - Bernard Schott, Mar 09 2019

Examples

			a(2) = amicable(3) - amicable(2) = 1184 - 284 = 900.
From _Bernard Schott_, Mar 10 2019: (Start)
a(1) = 284 - 220 = 64 is the difference between the larger and the smaller terms of the first amicable pair.
a(4) = 2620 - 1210 = 1410 is the difference between the smaller term of the third amicable pair and the larger term of the second amicable pair. (End)
		

Crossrefs

Cf. A063990 (amicable numbers), A306612.
Cf. A066539 (difference between larger and smaller terms of n-th amicable pair).
Cf. A139228 (first differences of perfect numbers).

Programs

  • MATLAB
    clear
    clc
    A = zeros(100000,1);
    parfor n = 1:1:100000
         f = find(rem(n, 1:floor(sqrt(n))) == 0);
         f = unique([1, n, f, fix(n./f)]);
         A(n) = sum(f) - n;
    end
    D = [];
    d = 1;
    for a = 1:1:100000
        for b = 1:1:100000
            if A(a) == b && A(b) == a && a~=b
                D(d) = a;
                d = d+1;
            end
        end
    end
    D
    difference = diff(D)

Formula

a(n) = A063990(n+1) - A063990(n). - Michel Marcus, Apr 08 2019

Extensions

More terms from Michel Marcus, Mar 09 2019

A000396 Perfect numbers k: k is equal to the sum of the proper divisors of k.

Original entry on oeis.org

6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176, 191561942608236107294793378084303638130997321548169216
Offset: 1

Views

Author

Keywords

Comments

A number k is abundant if sigma(k) > 2k (cf. A005101), perfect if sigma(k) = 2k (this sequence), or deficient if sigma(k) < 2k (cf. A005100), where sigma(k) is the sum of the divisors of k (A000203).
The numbers 2^(p-1)*(2^p - 1) are perfect, where p is a prime such that 2^p - 1 is also prime (for the list of p's see A000043). There are no other even perfect numbers and it is believed that there are no odd perfect numbers.
Numbers k such that Sum_{d|k} 1/d = 2. - Benoit Cloitre, Apr 07 2002
For number of divisors of a(n) see A061645(n). Number of digits in a(n) is A061193(n). - Lekraj Beedassy, Jun 04 2004
All terms other than the first have digital root 1 (since 4^2 == 4 (mod 6), we have, by induction, 4^k == 4 (mod 6), or 2*2^(2*k) = 8 == 2 (mod 6), implying that Mersenne primes M = 2^p - 1, for odd p, are of the form 6*t+1). Thus perfect numbers N, being M-th triangular, have the form (6*t+1)*(3*t+1), whence the property N mod 9 = 1 for all N after the first. - Lekraj Beedassy, Aug 21 2004
The earliest recorded mention of this sequence is in Euclid's Elements, IX 36, about 300 BC. - Artur Jasinski, Jan 25 2006
Theorem (Euclid, Euler). An even number m is a perfect number if and only if m = 2^(k-1)*(2^k-1), where 2^k-1 is prime. Euler's idea came from Euclid's Proposition 36 of Book IX (see Weil). It follows that every even perfect number is also a triangular number. - Mohammad K. Azarian, Apr 16 2008
Triangular numbers (also generalized hexagonal numbers) A000217 whose indices are Mersenne primes A000668, assuming there are no odd perfect numbers. - Omar E. Pol, May 09 2008, Sep 15 2013
If a(n) is even, then 2*a(n) is in A181595. - Vladimir Shevelev, Nov 07 2010
Except for a(1) = 6, all even terms are of the form 30*k - 2 or 45*k + 1. - Arkadiusz Wesolowski, Mar 11 2012
a(4) = A229381(1) = 8128 is the "Simpsons's perfect number". - Jonathan Sondow, Jan 02 2015
Theorem (Farideh Firoozbakht): If m is an integer and both p and p^k-m-1 are prime numbers then x = p^(k-1)*(p^k-m-1) is a solution to the equation sigma(x) = (p*x+m)/(p-1). For example, if we take m=0 and p=2 we get Euclid's result about perfect numbers. - Farideh Firoozbakht, Mar 01 2015
The cototient of the even perfect numbers is a square; in particular, if 2^p - 1 is a Mersenne prime, cototient(2^(p-1) * (2^p - 1)) = (2^(p-1))^2 (see A152921). So, this sequence is a subsequence of A063752. - Bernard Schott, Jan 11 2019
Euler's (1747) proof that all the even perfect number are of the form 2^(p-1)*(2^p-1) implies that their asymptotic density is 0. Kanold (1954) proved that the asymptotic density of odd perfect numbers is 0. - Amiram Eldar, Feb 13 2021
If k is perfect and semiprime, then k = 6. - Alexandra Hercilia Pereira Silva, Aug 30 2021
This sequence lists the fixed points of A001065. - Alois P. Heinz, Mar 10 2024

Examples

			6 is perfect because 6 = 1+2+3, the sum of all divisors of 6 less than 6; 28 is perfect because 28 = 1+2+4+7+14.
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 2d ed. 1966, pp. 11-23.
  • Stanley J. Bezuszka, Perfect Numbers (Booklet 3, Motivated Math. Project Activities), Boston College Press, Chestnut Hill MA, 1980.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 136-137.
  • Euclid, Elements, Book IX, Section 36, about 300 BC.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.3 Perfect and Amicable Numbers, pp. 82-83.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B1.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 239.
  • T. Koshy, "The Ends Of A Mersenne Prime And An Even Perfect Number", Journal of Recreational Mathematics, Baywood, NY, 1998, pp. 196-202.
  • Joseph S. Madachy, Madachy's Mathematical Recreations, New York: Dover Publications, Inc., 1979, p. 149 (First publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation).
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 46-48, 244-245.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 83-87.
  • József Sándor and Borislav Crstici, Handbook of Number Theory, II, Springer Verlag, 2004.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ian Stewart, L'univers des nombres, "Diviser Pour Régner", Chapter 14, pp. 74-81, Belin-Pour La Science, Paris, 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, chapter 4, pages 127-149.
  • Horace S. Uhler, On the 16th and 17th perfect numbers, Scripta Math., Vol. 19 (1953), pp. 128-131.
  • André Weil, Number Theory, An approach through history, From Hammurapi to Legendre, Birkhäuser, 1984, p. 6.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 107-110, Penguin Books, 1987.

Crossrefs

See A000043 for the current state of knowledge about Mersenne primes.
Cf. A228058 for Euler's criterion for odd terms.
Positions of 0's in A033879 and in A033880.
Cf. A001065.

Programs

  • Haskell
    a000396 n = a000396_list !! (n-1)
    a000396_list = [x | x <- [1..], a000203 x == 2 * x]
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Mathematica
    Select[Range[9000], DivisorSigma[1,#]== 2*# &] (* G. C. Greubel, Oct 03 2017 *)
    PerfectNumber[Range[15]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 10 2018 *)
  • PARI
    isA000396(n) = (sigma(n) == 2*n);
    
  • Python
    from sympy import divisor_sigma
    def ok(n): return n > 0 and divisor_sigma(n) == 2*n
    print([k for k in range(9999) if ok(k)]) # Michael S. Branicky, Mar 12 2022

Formula

The perfect number N = 2^(p-1)*(2^p - 1) is also multiplicatively p-perfect (i.e., A007955(N) = N^p), since tau(N) = 2*p. - Lekraj Beedassy, Sep 21 2004
a(n) = 2^A133033(n) - 2^A090748(n), assuming there are no odd perfect numbers. - Omar E. Pol, Feb 28 2008
a(n) = A000668(n)*(A000668(n)+1)/2, assuming there are no odd perfect numbers. - Omar E. Pol, Apr 23 2008
a(n) = A000217(A000668(n)), assuming there are no odd perfect numbers. - Omar E. Pol, May 09 2008
a(n) = Sum of the first A000668(n) positive integers, assuming there are no odd perfect numbers. - Omar E. Pol, May 09 2008
a(n) = A000384(A019279(n)), assuming there are no odd perfect numbers and no odd superperfect numbers. a(n) = A000384(A061652(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Aug 17 2008
a(n) = A006516(A000043(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Aug 30 2008
From Reikku Kulon, Oct 14 2008: (Start)
A144912(2, a(n)) = 1;
A144912(4, a(n)) = -1 for n > 1;
A144912(8, a(n)) = 5 or -5 for all n except 2;
A144912(16, a(n)) = -4 or -13 for n > 1. (End)
a(n) = A019279(n)*A000668(n), assuming there are no odd perfect numbers and odd superperfect numbers. a(n) = A061652(n)*A000668(n), assuming there are no odd perfect numbers. - Omar E. Pol, Jan 09 2009
a(n) = A007691(A153800(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Jan 14 2009
Even perfect numbers N = K*A000203(K), where K = A019279(n) = 2^(p-1), A000203(A019279(n)) = A000668(n) = 2^p - 1 = M(p), p = A000043(n). - Lekraj Beedassy, May 02 2009
a(n) = A060286(A016027(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Dec 13 2012
For n >= 2, a(n) = Sum_{k=1..A065549(n)} (2*k-1)^3, assuming there are no odd perfect numbers. - Derek Orr, Sep 28 2013
a(n) = A275496(2^((A000043(n) - 1)/2)) - 2^A000043(n), assuming there are no odd perfect numbers. - Daniel Poveda Parrilla, Aug 16 2016
a(n) = A156552(A324201(n)), assuming there are no odd perfect numbers. - Antti Karttunen, Mar 28 2019
a(n) = ((2^(A000043(n)))^3 - (2^(A000043(n)) - 1)^3 - 1)/6, assuming there are no odd perfect numbers. - Jules Beauchamp, Jun 06 2025

Extensions

I removed a large number of comments that assumed there are no odd perfect numbers. There were so many it was getting hard to tell which comments were true and which were conjectures. - N. J. A. Sloane, Apr 16 2023
Reference to Albert H. Beiler's book updated by Harvey P. Dale, Jan 13 2025

A037445 Number of infinitary divisors (or i-divisors) of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 8, 2, 8, 4, 4, 4, 4, 4, 8, 2, 4, 4, 4, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.
The smallest number m with exactly 2^n infinitary divisors is A037992(n); for these values m, a(m) increases also to a new record. - Bernard Schott, Mar 09 2023

Examples

			For n = 8, n = 2^3 = 2^"11" (writing 3 in binary) so the infinitary divisors are 2^"00" = 1, 2^"01" = 2, 2^"10" = 4 and 2^"11" = 8, so a(8) = 4.
For n = 90, n = 2*5*9 where 2,5,9 are in A050376, so a(90) = 2^3 = 8.
		

Crossrefs

Programs

  • Haskell
    a037445 = product . map (a000079 . a000120) . a124010_row
    -- Reinhard Zumkeller, Mar 19 2013
    
  • Maple
    A037445 := proc(n)
        local a,p;
        a := 1 ;
        for p in ifactors(n)[2] do
            a := a*2^wt(p[2]) ;
        end do:
        a ;
    end proc: # R. J. Mathar, May 16 2016
  • Mathematica
    Table[Length@((Times @@ (First[it]^(#1 /. z -> List)) & ) /@
    Flatten[Outer[z, Sequence @@ bitty /@
    Last[it = Transpose[FactorInteger[k]]], 1]]), {k, 2, 240}]
    bitty[k_] := Union[Flatten[Outer[Plus, Sequence @@ ({0, #1} & ) /@ Union[2^Range[0, Floor[Log[2, k]]]*Reverse[IntegerDigits[k, 2]]]]]]
    y[n_] := Select[Range[0, n], BitOr[n, # ] == n & ] divisors[Infinity][1] := {1}
    divisors[Infinity][n_] := Sort[Flatten[Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^y[m])]]] Length /@ divisors[Infinity] /@ Range[105] (* Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 29 2005 *)
    a[1] = 1; a[n_] := Times @@ Flatten[ 2^DigitCount[#, 2, 1]&  /@ FactorInteger[n][[All, 2]] ]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Aug 19 2013, after Reinhard Zumkeller *)
  • PARI
    A037445(n) = factorback(apply(a -> 2^hammingweight(a), factorint(n)[,2])) \\ Andrew Lelechenko, May 10 2014
    
  • Python
    from sympy import factorint
    def wt(n): return bin(n).count("1")
    def a(n):
        f=factorint(n)
        return 2**sum([wt(f[i]) for i in f]) # Indranil Ghosh, May 30 2017
  • Scheme
    (define (A037445 n) (if (= 1 n) n (* (A001316 (A067029 n)) (A037445 (A028234 n))))) ;; Antti Karttunen, May 28 2017
    

Formula

Multiplicative with a(p^e) = 2^A000120(e). - David W. Wilson, Sep 01 2001
Let n = q_1*...*q_k, where q_1,...,q_k are different terms of A050376. Then a(n) = 2^k (the number of subsets of a set with k elements is 2^k). - Vladimir Shevelev, Feb 19 2011.
a(n) = Product_{k=1..A001221(n)} A000079(A000120(A124010(n,k))). - Reinhard Zumkeller, Mar 19 2013
From Antti Karttunen, May 28 2017: (Start)
a(n) = A286575(A156552(n)). [Because multiplicative with a(p^e) = A001316(e).]
a(n) = 2^A064547(n). (End)
a(A037992(n)) = 2^n. - Bernard Schott, Mar 10 2023

Extensions

Corrected and extended by Naohiro Nomoto, Jun 21 2001

A002025 Smaller of an amicable pair: (a,b) such that sigma(a) = sigma(b) = a+b, a < b.

Original entry on oeis.org

220, 1184, 2620, 5020, 6232, 10744, 12285, 17296, 63020, 66928, 67095, 69615, 79750, 100485, 122265, 122368, 141664, 142310, 171856, 176272, 185368, 196724, 280540, 308620, 319550, 356408, 437456, 469028, 503056, 522405, 600392, 609928
Offset: 1

Views

Author

Keywords

Comments

Sometimes called friendly numbers, but this usage is deprecated.
All terms are abundant (A005101). - Michel Marcus, Mar 10 2013
See A125490-A125492 and A137231 for amicable triples, A036471-A036474 and A116148 for amicable quadruples, and A233553 for amicable quintuples. - M. F. Hasler, Dec 14 2013
This sequence is strictly increasing (and A002046, which contains the larger (deficient) number in each pair, is sorted by this sequence). - Jeppe Stig Nielsen, Jan 27 2015
For the related amicable pairs see A259180. - Omar E. Pol, Jul 15 2015
Pomerance (1981) shows that there are at most x*exp(-log(x)^(1/3)) terms of this sequence up to x. In particular, as originally demonstrated by Erdős, this sequence has density 0. - Charles R Greathouse IV, Aug 17 2017

References

  • Mariano Garcia, Jan Munch Pedersen and Herman te Riele, Amicable pairs - a survey, pp. 179-196 in: Alf van der Poorten and Andres Stein (eds.), High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, Fields Institute Communications, AMS, Providence RI, 2004.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 48-49.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 10^6, n++, If[(s = DivisorSigma[1, n]) > 2n && DivisorSigma[1, s - n] == s, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 09 2015, after M. F. Hasler *)
  • PARI
    aliquot(n)=sigma(n)-n
    isA002025(n)={if (n>1, local(a);a=aliquot(n);a>n && aliquot(a)==n)} \\ Michael B. Porter, Apr 11 2010
    
  • PARI
    for(n=1,1e6,(s=sigma(n))>2*n && sigma(s-n)==s && print1(n",")) \\ M. F. Hasler, Dec 14 2013
    
  • PARI
    forfactored(n=1,10^6, t=sigma(n[2])-n[1]; if(t>n[1] && sigma(t)==n[1]+t, print1(n[1]", "))) \\ Charles R Greathouse IV, Aug 17 2017

Formula

a(n) = A259180(2n-1) = A180164(n) - A259180(2n) = A180164(n) - A002046(n). - Omar E. Pol, Jul 15 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 24 2000

A049417 a(n) = isigma(n): sum of infinitary divisors of n.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 15, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 60, 26, 42, 40, 40, 30, 72, 32, 51, 48, 54, 48, 50, 38, 60, 56, 90, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 120, 72, 120, 80, 90, 60, 120, 62, 96, 80, 85, 84, 144, 68, 90
Offset: 1

Views

Author

Yasutoshi Kohmoto, Dec 11 1999

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.
This sequence is an infinitary analog of the Dedekind psi function A001615. Indeed, a(n) = Product_{q in Q_n}(q+1) = n*Product_{q in Q_n} (1+1/q), where {q} are terms of A050376 and Q_n is the set of distinct q's whose product is n. - Vladimir Shevelev, Apr 01 2014
1/a(n) is the asymptotic density of numbers that are infinitarily divided by n (i.e., numbers whose set of infinitary divisors includes n). - Amiram Eldar, Jul 23 2025

Examples

			If n = 8: 8 = 2^3 = 2^"11" (writing 3 in binary) so the infinitary divisors are 2^"00" = 1, 2^"01" = 2, 2^"10" = 4 and 2^"11" = 8; so a(8) = 1+2+4+8 = 15.
n = 90 = 2*5*9, where 2, 5, 9 are in A050376; so a(n) = 3*6*10 = 180. - _Vladimir Shevelev_, Feb 19 2011
		

Crossrefs

Cf. A049418 (3-infinitary), A074847 (4-infinitary), A097863 (5-infinitary).

Programs

  • Haskell
    a049417 1 = 1
    a049417 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f p e = product $ zipWith div
               (map (subtract 1 . (p ^)) $
                    zipWith (*) a000079_list $ map (+ 1) $ a030308_row e)
               (map (subtract 1 . (p ^)) a000079_list)
    -- Reinhard Zumkeller, Sep 18 2015
    
  • Maple
    isidiv := proc(d, n)
        local n2, d2, p, j;
        if n mod d <> 0 then
            return false;
        end if;
        for p in numtheory[factorset](n) do
            padic[ordp](n,p) ;
            n2 := convert(%, base, 2) ;
            padic[ordp](d,p) ;
            d2 := convert(%, base, 2) ;
            for j from 1 to nops(d2) do
                if op(j, n2) = 0 and op(j, d2) <> 0 then
                    return false;
                end if;
            end do:
        end do;
        return true;
    end proc:
    idivisors := proc(n)
        local a, d;
        a := {} ;
        for d in numtheory[divisors](n) do
            if isidiv(d, n) then
                a := a union {d} ;
            end if;
        end do:
        a ;
    end proc:
    A049417 := proc(n)
        local d;
        add(d, d=idivisors(n)) ;
    end proc:
    seq(A049417(n),n=1..100) ; # R. J. Mathar, Feb 19 2011
  • Mathematica
    bitty[k_] := Union[Flatten[Outer[Plus, Sequence @@ ({0, #1} & ) /@ Union[2^Range[0, Floor[Log[2, k]]]*Reverse[IntegerDigits[k, 2]]]]]]; Table[Plus@@((Times @@ (First[it]^(#1 /. z -> List)) & ) /@ Flatten[Outer[z, Sequence @@ bitty /@ Last[it = Transpose[FactorInteger[k]]], 1]]), {k, 2, 120}]
    (* Second program: *)
    a[n_] := If[n == 1, 1, Sort @ Flatten @ Outer[ Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] // Total;
    Array[a, 100] (* Jean-François Alcover, Mar 23 2020, after Paul Abbott in A077609 *)
  • PARI
    A049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[,2], b = binary(f[k,2]); prod(j=1, #b, if(b[j], 1+f[k,1]^(2^(#b-j)), 1)))} \\ Andrew Lelechenko, Apr 22 2014
    
  • PARI
    isigma(n)=vecprod([vecprod([f[1]^2^k+1|k<-[0..exponent(f[2])], bittest(f[2],k)])|f<-factor(n)~]) \\ M. F. Hasler, Oct 20 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A049417(n): return prod(p**(1<Chai Wah Wu, Jul 11 2024

Formula

Multiplicative: If e = Sum_{k >= 0} d_k 2^k (binary representation of e), then a(p^e) = Product_{k >= 0} (p^(2^k*{d_k+1}) - 1)/(p^(2^k) - 1). - Christian G. Bower and Mitch Harris, May 20 2005 [This means there is a factor p^2^k + 1 if d_k = 1, otherwise the factor is 1. - M. F. Hasler, Oct 20 2022]
Let n = Product(q_i) where {q_i} is a set of distinct terms of A050376. Then a(n) = Product(q_i + 1). - Vladimir Shevelev, Feb 19 2011
If n is squarefree, then a(n) = A001615(n). - Vladimir Shevelev, Apr 01 2014
a(n) = Sum_{k>=1} A077609(n,k). - R. J. Mathar, Oct 04 2017
a(n) = A126168(n)+n. - R. J. Mathar, Oct 05 2017
Multiplicative with a(p^e) = Product{k >= 0, e_k = 1} p^2^k + 1, where e = Sum e_k 2^k, i.e., e_k is bit k of e. - M. F. Hasler, Oct 20 2022
a(n) = iphi(n^2)/iphi(n), where iphi(n) = A091732(n). - Amiram Eldar, Sep 21 2024

Extensions

More terms from Wouter Meeussen, Sep 02 2001

A002046 Larger of amicable pair.

Original entry on oeis.org

284, 1210, 2924, 5564, 6368, 10856, 14595, 18416, 76084, 66992, 71145, 87633, 88730, 124155, 139815, 123152, 153176, 168730, 176336, 180848, 203432, 202444, 365084, 389924, 430402, 399592, 455344, 486178, 514736, 525915, 669688, 686072
Offset: 1

Views

Author

Keywords

Comments

The elements 76084, 123152, etc. are intentionally out of numerical order so that a(n) and A002025(n) form amicable pairs. - Michael B. Porter, Apr 17 2010
All terms are deficient (A005100). - Michel Marcus, Mar 10 2013
For the related amicable pairs see A259180. - Omar E. Pol, Jul 15 2015

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • For additional references see A002025.

Crossrefs

Programs

  • Maple
    f:= proc(t) uses numtheory; local s;
      s:= sigma(t) - t; s > t and sigma(s) - s = t
    end proc;
    Am1:= select(f,[$1..10^6]);
    map(numtheory:-sigma,Am1); # Robert Israel, Jul 16 2015
  • Mathematica
    amicableQ[n_] := With[{s = DivisorSigma[1, n] - n}, r = n != s && n == DivisorSigma[1, s] - s; If[r, mate[n] = s; True, False]]; mate /@ Select[ Range[lim], amicableQ[#] && # < mate[#] &] (* Jean-François Alcover, Sep 20 2011 *)
    Table[DivisorSigma[1, A002025[n]] - A002025[n], {n, 50}] (* T. D. Noe, Sep 20 2011 *)
  • PARI
    aliquot(n)=sigma(n)-n
    isA002046(n)={if (n>1, local(a);a=aliquot(n);aMichael B. Porter, Apr 17 2010

Formula

a(n) = A259180(2n) = A180164(n) - A259180(2n-1) = A180164(n) - A002025(n). - Omar E. Pol, Jul 15 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 25 2000

A259180 Amicable pairs.

Original entry on oeis.org

220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 10744, 10856, 12285, 14595, 17296, 18416, 63020, 76084, 66928, 66992, 67095, 71145, 69615, 87633, 79750, 88730, 100485, 124155, 122265, 139815, 122368, 123152, 141664, 153176, 142310, 168730, 171856, 176336, 176272, 180848, 185368, 203432, 196724, 202444, 280540, 365084
Offset: 1

Views

Author

Omar E. Pol, Jun 20 2015

Keywords

Comments

A pair of numbers x and y is called amicable if the sum of the proper divisors (or aliquot parts) of either one is equal to the other.
This is A002025 and A002046 interleaved hence the amicable pairs (x < y), ordered by increasing x, are adjacent to each other in the list.
By definition a property of the amicable pair (x, y) is that x + y = sigma(x) = sigma(y).
Amicable numbers A063990 are the terms of this sequence in increasing order.
First differs from A063990 at a(18).
For another version see A259933.
First differs from A259933 at a(17).

Examples

			  ------------------------------------
         Amicable pair          Sum
            x      y           x + y
  ------------------------------------
   n    A002025 A002046      A180164
  ------------------------------------
   1       220     284          504
   2      1184    1210         2394
   3      2620    2924         5544
   4      5020    5564        10584
   5      6232    6368        12600
   6     10744   10856        21600
   7     12285   14595        26880
   8     17296   18416        35712
   9     63020   76084       139104
  10     66928   66992       133920
  11     67095   71145       138240
  12     69615   87633       157248
  ...      ...     ...          ...
The sum of the proper divisors (or aliquot parts) of 220 is 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284. On the other hand the sum of the proper divisors (or aliquot parts) of 284 is 1 + 2 + 4 + 71 + 142 = 220. Note that 220 + 284 = sigma(220) = sigma(284) = 504. The smallest amicable pair is (220, 284), so a(1) = 220 and a(2) = 284.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{s = {}, g, k}, g[x_] := DivisorSigma[1, x] - x; Do[k = g@ i; If[And[g@ k == i, k != i, ! MemberQ[s, i]], s = s~Join~{i, k}], {i, n}]; s]; f@ 300000 (* Michael De Vlieger, Jul 02 2015 *)
  • PARI
    A259180_upto(N, L=List(), s)={ forfactored(n=1, N, (s=sigma(n[2]))>2*n[1] && sigma(s-n[1])==s && listput(L, [n[1], s-n[1]]));concat(L)} \\ M. F. Hasler, Oct 11 2019

Formula

a(2n-1) = A002025(n); a(2n) = A002046(n).
a(2n-1) + a(2n) = A000203(a(2n-1)) = A000203(a(2n)) = A180164(n).
Showing 1-10 of 133 results. Next