cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 118 results. Next

A382291 a(n) = A037445(n)/A034444(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 21 2025

Keywords

Comments

First differs from A368168 at n = 64, and from A359411, A367516 and A368979 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^(DigitCount[e, 2, 1] - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 105]
  • PARI
    a(n) = vecprod(apply(x -> 1 << (hammingweight(x)-1), factor(n)[, 2]));

Formula

a(n) = 2^A382290(n).
Multiplicative with a(p^e) = 2^(A000120(e)-1) = A048896(e-1) (= A243036(e) for e >= 2).
a(n) >= 1, with equality if and only if n is in A138302.
a(n) = 2 if and only if n is in A382292.

A260084 Infinite sequence starting with a(0)=0 such that A(a(k)) = a(k-1) for all k>=1, where A(n) = n - A037445(n).

Original entry on oeis.org

0, 2, 6, 10, 14, 18, 22, 30, 34, 42, 46, 54, 58, 62, 70, 78, 82, 90, 94, 102, 106, 114, 118, 122, 130, 138, 142, 146, 154, 158, 162, 166, 174, 182, 190, 194, 210, 214, 222, 230, 238, 242, 250, 254, 270, 274, 278, 286, 294, 298, 302, 310, 314, 330, 334, 342, 346, 354, 358, 366, 374, 390, 394, 402, 410, 418, 426, 434, 442
Offset: 0

Views

Author

Vladimir Shevelev, Jul 15 2015

Keywords

Comments

The first infinitary analog (see also A260124) of A259934 (see comment there). Using Guba's method (2015) one can prove that such an infinite sequence exists.
All the first differences are powers of 2 (A260085). The infinitary case is interesting because here we have at least two analogs of sequences A259934, A259935 (respectively A260084, A260124 and A260085, A260123).
It is a corollary of the fact that all terms of A037445, except for n=1, are even (powers of 2). Therefore, in the analogs of A259934 we can begin with not only 0,2 (as in this sequence), but also with 0,1 (as in A260124). Then this sequence contains only the even terms, while A260124 - only the odd ones.
A generalization. For an even m, the multiplication of A260124 by 2^m and 2^(m+1) gives two infinite solutions of the system of equations for integer x_n, n>=1: A037445(x_1 + ... + x_n) = x_n/2^A005187(m), n>=1. In particular, for m=0, we obtain A260124 and A260084.

Crossrefs

Formula

a(n) = 2 * A260124(n).

A260123 The second infinite sequence of positive integers such that a(n) = A037445(a(1)+a(2)+...+a(n)) for all n>=1 (see also A260085).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 4, 4, 2, 4, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 4, 2, 2, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 2, 8, 2, 2, 4, 4, 2, 2, 4, 2, 8, 2, 4, 2, 4, 2, 4, 4, 8, 2, 4, 4, 4, 4, 4, 4, 2, 8, 2, 4, 2, 4, 4, 8, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 4, 2, 8, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 2, 8, 2, 2, 8
Offset: 1

Views

Author

Vladimir Shevelev, Jul 17 2015

Keywords

Comments

The second after A260085 infinitary analog of A259935 (see comment there). Using Guba's method (2015) one can prove that such an infinite sequence exists.
All terms are powers of 2.

Crossrefs

A327573 Partial sums of the number of infinitary divisors function: a(n) = Sum_{k=1..n} id(k), where id is A037445.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 41, 43, 45, 49, 51, 55, 59, 63, 65, 73, 75, 79, 83, 87, 89, 97, 99, 103, 107, 111, 115, 119, 121, 125, 129, 137, 139, 147, 149, 153, 157, 161, 163, 167, 169, 173, 177, 181, 183, 191, 195, 203, 207, 211, 213, 221
Offset: 1

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Comments

Differs from A306069 at n >= 16.

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A006218 (all divisors), A064608 (unitary), A306069 (bi-unitary), A145353 (exponential).

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1]; id[1] = 1; id[n_] := Times @@ (f @@@ FactorInteger[n]); Accumulate[Array[id, 100]]

Formula

a(n) ~ 2 * c * n * log(n), where c = 0.366625... (A327576). [Corrected by Amiram Eldar, May 07 2021]

A327576 Decimal expansion of the constant that appears in the asymptotic formula for average order of the number of infinitary divisors function (A037445).

Original entry on oeis.org

3, 6, 6, 6, 2, 5, 2, 7, 6, 9, 4, 5, 3, 8, 1, 9, 0, 9, 5, 5, 6, 5, 3, 2, 7, 2, 0, 6, 8, 7, 0, 0, 1, 5, 6, 3, 0, 3, 3, 6, 1, 2, 1, 5, 5, 9, 7, 1, 0, 0, 9, 2, 7, 3, 0, 3, 7, 5, 8, 7, 5, 1, 5, 3, 0, 5, 7, 4, 7, 5, 3, 3, 4, 4, 7, 4, 9, 2, 5, 0, 7, 5, 7, 9, 0, 5, 6
Offset: 0

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Examples

			0.366625276945381909556532720687001563033612155971009...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A059956 (corresponding constant for unitary divisors), A306071 (bi-unitary).

Programs

  • Mathematica
    m = 1000; em = 10; f[x_] := Sum[Log[1 - 1/(1 + 1/x^(2^e))^2], {e, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; $MaxExtraPrecision = 1500; RealDigits[(1/2)*Exp[f[1/2] + f[1/3]]* Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - (1/2)^k - (1/3)^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals Limit_{n->oo} A327573(n)/(2 * n * log(n)). [Corrected by Amiram Eldar, May 07 2021]
Equals (1/2) * Product_{P} (1 - 1/(P+1)^2), where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).

A260085 Infinite sequence of positive integers such that a(n) = A037445(a(1)+a(2)+...+a(n)) for all n>=1.

Original entry on oeis.org

2, 4, 4, 4, 4, 4, 8, 4, 8, 4, 8, 4, 4, 8, 8, 4, 8, 4, 8, 4, 8, 4, 4, 8, 8, 4, 4, 8, 4, 4, 4, 8, 8, 8, 4, 16, 4, 8, 8, 8, 4, 8, 4, 16, 4, 4, 8, 8, 4, 4, 8, 4, 16, 4, 8, 4, 8, 4, 8, 8, 16, 4, 8, 8, 8, 8, 8, 8, 4, 16, 4, 8, 4, 8, 8, 16, 4, 8, 4, 8, 4, 4, 8, 8, 4, 4, 8, 4, 16, 8, 8, 4, 16, 4, 8, 8, 8, 4, 8, 4, 16, 4, 4, 16
Offset: 1

Views

Author

Vladimir Shevelev, Jul 15 2015

Keywords

Comments

The first infinitary analog (see also A260123) of A259935 (see comment there). Using Guba's method (2015) one can prove that such an infinite sequence exists.
All terms are powers of 2.

Crossrefs

Formula

a(n) = 2 * A260123(n).

A273011 Numbers n such that d_i(n) >= d_i(k) for k = 1 to n-1, where d_i(n) is the number of infinitary divisors of n (A037445).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 24, 30, 40, 42, 54, 56, 60, 66, 70, 72, 78, 84, 88, 90, 96, 102, 104, 105, 108, 110, 114, 120, 168, 210, 216, 264, 270, 280, 312, 330, 360, 378, 384, 390, 408, 420, 440, 456, 462, 480, 504, 510, 520, 540, 546, 552, 570, 594, 600, 616
Offset: 1

Views

Author

Vladimir Shevelev, May 13 2016

Keywords

Comments

An infinitary (or Fermi-Dirac) analog of the Ramanujan sequence A067128.
Between the smallest number b_k which is product of k distinct terms of A050376 and b_(k+1) all terms are products of k distinct terms of A050376.
Thus every subsequence of terms, having in Fermi-Dirac factorization a fixed number of distinct factors from A050376, is finite.
These subsequences have cardinalities: 1, 4, 10, 21, 47, ...

Crossrefs

Programs

  • Mathematica
    a = {}; b = {0}; Do[If[# >= Max@b, AppendTo[a, k] && AppendTo[b, #]] &@ If[k == 1, 1, Times @@ Flatten@ Map[2^First@ DigitCount[#, 2] &, FactorInteger[k][[All, 2]]]], {k, 10^3}]; a (* Michael De Vlieger, May 13 2016, after Jean-François Alcover at A037445 *)

A317941 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A037445, number of infinitary divisors (or i-divisors) of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, -5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, -5, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, -11, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, -5, -5, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 22 2018

Keywords

Comments

Multiplicative because A037445 is.

Crossrefs

Cf. A037445, A317934 (denominators).
Cf. also A317933, A317940.

Programs

  • PARI
    up_to = 1+(2^16);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    A037445(n) = factorback(apply(a -> 2^hammingweight(a), factorint(n)[, 2])) \\ From A037445
    v317941aux = DirSqrt(vector(up_to, n, A037445(n)));
    A317941(n) = numerator(v317941aux[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A037445(n) - Sum_{d|n, d>1, d 1.

A260124 The second infinite sequence starting with a(0)=0 such that A(a(k)) = a(k-1) for all k>=1, where A(n) = n - A037445(n) (cf. A260084).

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 11, 15, 17, 21, 23, 27, 29, 31, 35, 39, 41, 45, 47, 51, 53, 57, 59, 61, 65, 69, 71, 73, 77, 79, 81, 83, 87, 91, 95, 97, 105, 107, 111, 115, 119, 121, 125, 127, 135, 137, 139, 143, 147, 149, 151, 155, 157, 165, 167, 171, 173, 177, 179, 183, 187, 195, 197, 201, 205, 209, 213, 217, 221, 223, 231, 233, 237, 239, 243, 247, 255, 257, 261, 263, 267, 269, 271, 275, 279, 281, 283, 287, 289, 297, 301, 305
Offset: 0

Views

Author

Vladimir Shevelev, Jul 17 2015

Keywords

Comments

The second infinitary analog (after A260084) of A259934 (see comment there). Using Guba's method (2015) one can prove that such an infinite sequence exists.
All the first differences are powers of 2 (A260123).
See also comment in A260084.

Crossrefs

Formula

a(n) = A260084(n)/2.

A282843 Numbers k for which id(k) = id(k + id(k)), where id(k) = A037445(k) is the number of infinitary divisors of k.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 22, 23, 28, 29, 32, 34, 35, 41, 44, 46, 47, 48, 51, 58, 59, 64, 65, 70, 71, 76, 79, 81, 82, 87, 88, 91, 94, 95, 96, 101, 102, 107, 111, 112, 115, 118, 119, 125, 128, 129, 130, 132, 137, 141, 142, 143, 144, 149, 152, 155
Offset: 1

Views

Author

Vladimir Shevelev, Feb 22 2017

Keywords

Comments

The infinitary analog of A175304. The sequence contains smaller of pairs(p,q) of terms of A050376 if q-p=2 (Fermi-Dirac twin primes). Unlike A175304, this sequence contains some squares (64,81,144,...).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1]; id[1] = 1; id[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[200], id[#] == id[# + id[#]] &] (* Amiram Eldar, Apr 11 2025 *)
  • PARI
    id(n)=2^vecsum(apply(hammingweight, factor(n)[,2]))
    is(n)=my(i=id(n)); id(n+i)==i \\ Charles R Greathouse IV, Feb 22 2017

Extensions

More term from Peter J. C. Moses, Feb 22 2017
Showing 1-10 of 118 results. Next