cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 89 results. Next

A129656 Infinitary abundant numbers: integers for which A126168 (n)>n, or equivalently for which A049417 (n)>2n.

Original entry on oeis.org

24, 30, 40, 42, 54, 56, 66, 70, 72, 78, 88, 96, 102, 104, 114, 120, 138, 150, 168, 174, 186, 210, 216, 222, 246, 258, 264, 270, 280, 282, 294, 312, 318, 330, 354, 360, 366, 378, 384, 390, 402, 408, 420, 426, 438, 440, 456, 462, 474, 480, 486, 498
Offset: 1

Views

Author

Ant King, Apr 29 2007

Keywords

Comments

For large n, the distribution of a(n) is approximately linear and asymptotically satisfies a(n)~7.95n. It follows that the density of the infinitary abundant numbers is 1/7.95, which is about 0.126.

Examples

			The third integer that is exceeded by its proper infinitary divisor sum is 40. Hence a(3)=40.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;InfinitaryAbundantNumberQ[k_]:=If[properinfinitarydivisorsum[k]>k,True,False];Select[Range[500],InfinitaryAbundantNumberQ[ # ] &]
    fun[p_, e_] := Module[{ b = IntegerDigits[e, 2]}, m=Length[b]; Product[If[b[[j]] > 0, 1+p^(2^(m-j)), 1], {j, 1, m}]]; isigma[1]=1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[1000], isigma[#]>2# &] (* Amiram Eldar, May 12 2019 *)

A306985 Numbers k such that isigma(k) = isigma(k+1), where isigma(k) is the sum of the infinitary divisors of k (A049417).

Original entry on oeis.org

14, 27, 44, 459, 620, 957, 1334, 1634, 1652, 2204, 2685, 3195, 3451, 3956, 4064, 4544, 5547, 8495, 8636, 8907, 9844, 11515, 15296, 19491, 20145, 20155, 27643, 31724, 33998, 38180, 41265, 41547, 42818, 45716, 48364, 61964, 64665, 74875, 74918, 79316, 79826
Offset: 1

Views

Author

Amiram Eldar, Mar 18 2019

Keywords

Comments

a(n) differs from A293183(n) starting at n = 15.

Examples

			14 is in the sequence since isigma(14) = isigma(15) = 24.
		

Crossrefs

Programs

  • Mathematica
    fun[p_,e_] := Module[{ b = IntegerDigits[e,2]}, m=Length[b]; Product[If[b[[j]]>0, 1+p^(2^(m-j)),1], {j,1,m}]]; isigma[1]=1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; aQ[n_] := isigma[n] == isigma[n+1]; Select[Range[1000], aQ]

A129657 Infinitary deficient numbers: integers for which A126168(n) < n, or equivalently for which A049417(n) < 2n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84
Offset: 1

Views

Author

Ant King, Apr 29 2007

Keywords

Comments

For large n, the distribution of a(n) is approximately linear and asymptotically satisfies a(n)~1.144n. It follows that the density of the infinitary deficient numbers is 1/1.144, which is about 0.874.

Examples

			The sixth integer that exceeds its proper infinitary divisor sum is 7. Hence a(6)=7.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;InfinitaryDeficientNumberQ[k_]:=If[properinfinitarydivisorsum[k] 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[100], isigma[#] < 2 # &] (* Amiram Eldar, Jun 09 2019 *)

A327634 Infinitary highly abundant numbers: numbers m such that isigma(m) > isigma(k) for all k < m, where isigma(k) is the sum of infinitary divisors of n (A049417).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 18, 21, 22, 24, 30, 40, 42, 54, 66, 72, 78, 88, 96, 102, 114, 120, 168, 210, 216, 264, 312, 330, 360, 378, 384, 408, 456, 480, 510, 546, 552, 600, 672, 690, 696, 744, 840, 1080, 1320, 1512, 1560, 1848, 1920, 2040, 2184, 2280, 2688
Offset: 1

Views

Author

Amiram Eldar, Sep 20 2019

Keywords

Comments

The infinitary version of A002093.

Examples

			The first 10 values of isigma(k) for k = 1 to 10 are: 1, 3, 4, 5, 6, 12, 8, 15, 10, 18. Record values are reached for all these values of k except for 7 and 9, therefore the sequence begins with 1, 2, 3, 4, 5, 6, 8, 10, ...
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); seq = {};sm = 0; Do[s = isigma[n]; If[s > sm, sm = s; AppendTo[seq, n]], {n, 1, 10^4}]; seq

A185373 The numerator of the fraction |n^2/A049417(n)-A064380(n)|.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 4, 1, 5, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 5, 1, 2, 1, 2, 9, 3, 1, 1, 1, 4, 11, 11, 25, 2, 1, 1, 9, 2, 1, 11, 1, 4, 3, 7, 1, 2, 1, 2, 1, 13, 1, 3, 1, 13, 49, 17, 1, 0, 1, 1, 49, 16, 25, 1, 1, 17, 19, 35, 1, 14, 1, 2
Offset: 2

Views

Author

Vladimir Shevelev, Feb 17 2011

Keywords

Comments

n^2/A049417(n) is a multiplicative function, whereas A064380 is not. This sequence here measures the (small) differences n^2/A049417(n)-A064380(n) = 1/3, 1/4, 1/5, 1/6, 0, 1/8, 4/15, 1/10, 5/9, 1/12, 1/5 ...

Crossrefs

Cf. A064380, A049417, A185383 (denominators)

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1);
    infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[ FactorInteger[g][[;; , 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]];
    a[n_] := Abs[Numerator[n^2 / isigma[n] - Sum[Boole[infCoprimeQ[j, n]], {j, 1, n-1}]]]; Array[a, 100, 2] (* Amiram Eldar, Mar 20 2025 *)

A185383 a(n) is the denominator of the fraction |n^2/A049417(n)-A064380(n)|.

Original entry on oeis.org

3, 4, 5, 6, 1, 8, 15, 10, 9, 12, 5, 14, 6, 8, 17, 18, 5, 20, 3, 32, 9, 24, 5, 26, 21, 40, 5, 30, 2, 32, 51, 16, 27, 48, 25, 38, 15, 56, 9, 42, 8, 44, 15, 4, 18, 48, 17, 50, 39, 8, 35, 54, 10, 72, 15, 80, 45, 60, 1, 62, 24, 80, 85, 84, 4, 68, 45, 32, 36, 72, 25, 74, 57
Offset: 2

Views

Author

Vladimir Shevelev, Feb 17 2011

Keywords

Comments

If A185373(n)=0, then we accept a(n)=1.

Crossrefs

Formula

a(n)=n+1 iff n is in A050376.

Extensions

a(73) corrected by Amiram Eldar, Sep 18 2019

A334901 Infinitary practical numbers: numbers m such that every number 1 <= k <= isigma(m) is a sum of distinct infinitary divisors of m, where isigma is A049417.

Original entry on oeis.org

1, 2, 6, 8, 24, 30, 40, 42, 54, 56, 66, 72, 78, 88, 104, 120, 128, 168, 210, 216, 264, 270, 280, 312, 330, 360, 378, 384, 390, 408, 440, 456, 462, 480, 504, 510, 520, 546, 552, 570, 594, 600, 616, 640, 672, 680, 690, 696, 702, 714, 728, 744, 750, 760, 792, 798
Offset: 1

Views

Author

Amiram Eldar, May 16 2020

Keywords

Comments

Includes the powers of 2 of the form 2^(2^k - 1) for k = 0, 1, ... (A058891). The other terms are a subset of infinitary abundant numbers (A129656) and infinitary pseudoperfect numbers (A306983).

Crossrefs

The infinitary version of A005153.

Programs

  • Mathematica
    bin[n_] := 2^(-1 + Position[Reverse @ IntegerDigits[n, 2], ?(# == 1 &)] // Flatten); f[p, e_] := p^bin[e]; icomp[n_] := Flatten[f @@@ FactorInteger[n]]; fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infPracQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 || (n > 1 && OddQ[n]), False, If[n == 1, True, r = Sort[icomp[n]]; Do[If[r[[i]] > 1 + isigma[prod], ok = False; Break[]]; prod = prod*r[[i]], {i, Length[r]}]; ok]]]; Select[Range[1000], infPracQ]

A334974 Infinitary admirable numbers: numbers k such that there is a proper infinitary divisor d of k such that isigma(k) - 2*d = 2*k, where isigma is the sum of infinitary divisors function (A049417).

Original entry on oeis.org

24, 30, 40, 42, 54, 56, 66, 70, 78, 88, 96, 102, 104, 114, 120, 138, 150, 174, 186, 222, 246, 258, 270, 282, 294, 318, 354, 360, 366, 402, 420, 426, 438, 474, 486, 498, 534, 540, 582, 606, 618, 630, 642, 654, 660, 678, 726, 762, 780, 786, 822, 834, 894, 906, 942
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Equivalently, numbers that are equal to the sum of their proper infinitary divisors, with one of them taken with a minus sign.
Admirable numbers (A111592) whose number of divisors is a power of 2 (A036537) are also infinitary admirable numbers, since all of their divisors are infinitary. Terms with number of divisors that is not a power of 2 are 96, 150, 294, 360, 420, 486, 540, 630, 660, 726, 780, 960, 990, ...

Examples

			150 is in the sequence since 150 = 1 + 2 + 3 - 6 + 25 + 50 + 75 is the sum of its proper infinitary divisors with one of them, 6, taken with a minus sign.
		

Crossrefs

The infinitary version of A111592.
Subsequence of A129656.

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infDivQ[n_, 1] = True; infDivQ[n_, d_] := BitAnd[IntegerExponent[n, First /@ (f = FactorInteger[d])], (e = Last /@ f)] == e; infAdmQ[n_] := (ab = isigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && infDivQ[n, ab/2]; Select[Range[1000], infAdmQ]

A185079 a(n) = A064380(n) * A049417(n).

Original entry on oeis.org

3, 8, 15, 24, 36, 48, 60, 80, 90, 120, 140, 168, 192, 216, 255, 288, 330, 360, 390, 448, 504, 528, 600, 624, 672, 720, 760, 840, 936, 960, 1020, 1056, 1134, 1200, 1300, 1368, 1440, 1512, 1620, 1680, 1632, 1848, 1920, 1980, 2088, 2208, 2312, 2400, 2496, 2592, 2730, 2808, 2880, 3024, 3240, 3200, 3330
Offset: 2

Views

Author

Vladimir Shevelev, Feb 18 2011

Keywords

Crossrefs

Formula

a(n) = n^2 + o(n^(1+eps)).

Extensions

Corrected and extended by T. D. Noe, Feb 18 2011

A240112 Numbers for which the values of the Dedekind psi function (A001615) are greater than the values of the infinitary Dedekind psi function (A049417).

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 75, 76, 80, 81, 84, 90, 92, 98, 99, 100, 108, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198, 204, 207
Offset: 1

Views

Author

Vladimir Shevelev, Apr 01 2014

Keywords

Comments

The first term of A072587 that is not in this sequence is 72.
On the set of the nonsquarefree numbers (A013929) it is complement to A240111.
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 2, 29, 284, 2845, 28527, 285352, 2853422, 28534455, 285344362, 2853443344, ... . Apparently, the asymptotic density of this sequence exists and equals 0.2853443... . - Amiram Eldar, Feb 13 2025

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; f2[p_, e_] := (p+1)*p^(e-1); q[1] = False; q[n_] := Module[{fct = FactorInteger[n]}, Times @@ f2 @@@ fct > Times @@ f1 @@@ fct]; Select[Range[250], q] (* Amiram Eldar, Feb 13 2025 *)
  • PARI
    isok(k) = {my(f = factor(k), b); prod(i=1, #f~, (f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)) > prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)));} \\ Amiram Eldar, Feb 13 2025

Extensions

More terms from Peter J. C. Moses, Apr 02 2014
Showing 1-10 of 89 results. Next