cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A334975 Odd infinitary admirable numbers: the odd terms of A334974.

Original entry on oeis.org

945, 43065, 46035, 80535, 354585, 403095, 430815, 437745, 442365, 2305875, 3525795, 4404105, 4891887, 5388495, 5927985, 6126645, 6220665, 6375105, 6537375, 7853625, 8109585, 8731125, 9071865, 9338595, 9784125, 13241745, 23760555, 33381855, 34592805, 35642295
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Of the first 10^4 infinitary admirable numbers only 9 are odd.

Crossrefs

The infinitary version of A109729.
Intersection of A005408 and A334974.
Subsequence of A127666.

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infDivQ[n_, 1] = True; infDivQ[n_, d_] := BitAnd[IntegerExponent[n, First /@ (f = FactorInteger[d])], (e = Last /@ f)] == e; infAdmQ[n_] := (ab = isigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && infDivQ[n, ab/2]; Select[Range[1, 5*10^5, 2], infAdmQ]

A334972 Bi-unitary admirable numbers: numbers k such that there is a proper bi-unitary divisor d of k such that bsigma(k) - 2*d = 2*k, where bsigma is the sum of bi-unitary divisors function (A188999).

Original entry on oeis.org

24, 30, 40, 42, 48, 54, 56, 66, 70, 78, 80, 88, 102, 104, 114, 120, 138, 150, 162, 174, 186, 222, 224, 246, 258, 270, 282, 294, 318, 354, 360, 366, 402, 420, 426, 438, 448, 474, 498, 534, 540, 582, 606, 618, 630, 642, 654, 660, 672, 678, 720, 726, 762, 780, 786
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Equivalently, numbers that are equal to the sum of their proper bi-unitary divisors, with one of them taken with a minus sign.
Admirable numbers (A111592) that are exponentially odd (A268335) are also bi-unitary admirable numbers since all of their divisors are bi-unitary. Terms that are not exponentially odd are 48, 80, 150, 162, 294, 360, 420, 448, 540, 630, 660, 720, 726, 780, 832, 990, ...

Examples

			48 is in the sequence since 48 = 1 + 2 + 3 - 6 + 8 + 16 + 24 is the sum of its proper bi-unitary divisors with one of them, 6, taken with a minus sign.
		

Crossrefs

The bi-unitary version of A111592.
Subsequence of A292982.

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); buDivQ[n_, 1] = True; buDivQ[n_, div_] := If[Mod[#2, #1] == 0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]] &, {#1, #2/#1}]] == 1, False] & @@ {div, n}; buAdmQ[n_] := (ab = bsigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && buDivQ[n, ab/2]; Select[Range[1000], buAdmQ]

A336680 Exponential admirable numbers: numbers k such that there is a proper exponential divisor d of k such that esigma(k) - 2*d = 2*k, where esigma is the sum of exponential divisors function (A051377).

Original entry on oeis.org

900, 1764, 4356, 4500, 4900, 6084, 6300, 7056, 8820, 9900, 10404, 11700, 12348, 12996, 14700, 15300, 17100, 19044, 19404, 20700, 21780, 22932, 26100, 27900, 29988, 30276, 30420, 30492, 31500, 33300, 33516, 34596, 35280, 36900, 38700, 40572, 42300, 42588, 47700
Offset: 1

Views

Author

Amiram Eldar, Jul 30 2020

Keywords

Comments

Equivalently, numbers that are equal to the sum of their proper exponential divisors, with one of them taken with a minus sign.

Examples

			900 is a term since 900 = 30 + 60 + 90 + 150 - 180 + 300 + 450 is the sum of its proper exponential divisors with one of them, 180, taken with a minus sign.
		

Crossrefs

The exponential version of A111592.
Subsequence of A129575.
Similar sequences: A328328, A334972, A334974.

Programs

  • Mathematica
    dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; expAdmQ[n_] := (ab = esigma[n] - 2*n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && expDivQ[n, ab/2]; Select[Range[50000], expAdmQ]

A335196 Nonunitary admirable numbers: numbers k such that there is a nonunitary divisor d of k such that nusigma(k) - 2*d = k, where nusigma is the sum of nonunitary divisors function (A048146).

Original entry on oeis.org

48, 80, 96, 108, 120, 160, 168, 180, 192, 216, 224, 252, 264, 280, 300, 312, 320, 336, 352, 360, 384, 396, 408, 416, 432, 448, 456, 468, 480, 504, 528, 540, 552, 560, 600, 612, 624, 640, 672, 684, 696, 704, 720, 744, 756, 768, 792, 816, 828, 832, 840, 864, 880
Offset: 1

Views

Author

Amiram Eldar, May 26 2020

Keywords

Comments

Equivalently, numbers that are equal to the sum of their nonunitary divisors, with one of them taken with a minus sign.

Examples

			48 is a term since 48 = 2 - 4 + 6 + 8 + 12 + 24 is the sum of its nonunitary divisors with one of them, 4, taken with a minus sign.
		

Crossrefs

The nonunitary version of A111592.
Subsequence of A064597.
Similar sequences: A328328, A334972, A334974.
Cf. A048146.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; nuAdmQ[n_] := (ab = nusigma[n] - n) > 0 && EvenQ[ab] && ab/2 < n && !CoprimeQ[ab/2, 2*n/ab]; Select[Range[1000], nuAdmQ]
Showing 1-4 of 4 results.