A334973
Odd bi-unitary admirable numbers: the odd terms of A334972.
Original entry on oeis.org
945, 43065, 46035, 48195, 80535, 354585, 403095, 430815, 437745, 442365, 458055, 2305875, 3525795, 4404105, 4891887, 5388495, 5803245, 6126645, 6220665, 6375105, 6537375, 7853625, 7981875, 8109585, 8731125, 9071865, 9338595, 9784125, 13241745, 13351635, 23760555
Offset: 1
-
fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); buDivQ[n_, 1] = True; buDivQ[n_, div_] := If[Mod[#2, #1] == 0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]] &, {#1, #2/#1}]] == 1, False] & @@ {div, n}; buAdmQ[n_] := (ab = bsigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && buDivQ[n, ab/2]; Select[Range[1, 5*10^5, 2], buAdmQ]
A336681
Odd exponential admirable numbers: the odd terms of A336680.
Original entry on oeis.org
6485886225, 71344748475, 110260065825, 123231838275, 125730522225, 149175383175, 162485579025, 185601564225, 188090700525, 191620685025, 195686793225, 201062472975, 239977790325, 265921335225, 278893107675, 304836652575, 343751969925, 395639059725, 434554377075
Offset: 1
6485886225 is a term since 6485886225 = 80535 + 241605 + ... + (-8456175) + ... + 2161962075 is the sum of its proper exponential divisors with one of them, 8456175, taken with a minus sign.
The exponential version of
A109729.
-
dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; expAdmQ[n_] := (ab = esigma[n] - 2*n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && expDivQ[n, ab/2]; Select[Range[1, 10^9, 2], expAdmQ]
Showing 1-2 of 2 results.
Comments