cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A185373 The numerator of the fraction |n^2/A049417(n)-A064380(n)|.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 4, 1, 5, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 5, 1, 2, 1, 2, 9, 3, 1, 1, 1, 4, 11, 11, 25, 2, 1, 1, 9, 2, 1, 11, 1, 4, 3, 7, 1, 2, 1, 2, 1, 13, 1, 3, 1, 13, 49, 17, 1, 0, 1, 1, 49, 16, 25, 1, 1, 17, 19, 35, 1, 14, 1, 2
Offset: 2

Views

Author

Vladimir Shevelev, Feb 17 2011

Keywords

Comments

n^2/A049417(n) is a multiplicative function, whereas A064380 is not. This sequence here measures the (small) differences n^2/A049417(n)-A064380(n) = 1/3, 1/4, 1/5, 1/6, 0, 1/8, 4/15, 1/10, 5/9, 1/12, 1/5 ...

Crossrefs

Cf. A064380, A049417, A185383 (denominators)

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1);
    infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[ FactorInteger[g][[;; , 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]];
    a[n_] := Abs[Numerator[n^2 / isigma[n] - Sum[Boole[infCoprimeQ[j, n]], {j, 1, n-1}]]]; Array[a, 100, 2] (* Amiram Eldar, Mar 20 2025 *)

A185079 a(n) = A064380(n) * A049417(n).

Original entry on oeis.org

3, 8, 15, 24, 36, 48, 60, 80, 90, 120, 140, 168, 192, 216, 255, 288, 330, 360, 390, 448, 504, 528, 600, 624, 672, 720, 760, 840, 936, 960, 1020, 1056, 1134, 1200, 1300, 1368, 1440, 1512, 1620, 1680, 1632, 1848, 1920, 1980, 2088, 2208, 2312, 2400, 2496, 2592, 2730, 2808, 2880, 3024, 3240, 3200, 3330
Offset: 2

Views

Author

Vladimir Shevelev, Feb 18 2011

Keywords

Crossrefs

Formula

a(n) = n^2 + o(n^(1+eps)).

Extensions

Corrected and extended by T. D. Noe, Feb 18 2011

A185078 Numbers k for which A064380(k) = k/2.

Original entry on oeis.org

2, 6, 8, 10, 60, 70, 128, 136, 9822, 18632, 32768, 32896, 36720, 69726, 73662, 73686, 73734, 85962, 86046, 87114, 87198, 87222, 87258, 87294, 87306, 87342, 87366, 87546, 87558, 88014, 88278, 88302, 88338, 88386, 127326, 128046, 128082, 128382, 128406, 128598, 128802
Offset: 1

Views

Author

Vladimir Shevelev, Feb 18 2011

Keywords

Comments

Note that, if there exist infinitely many infinitary perfect numbers (A007357), then, as k tends to infinity over such numbers, A064380(k)/k = 1/2 + o(k^(-1+eps)). We conjecture that here A064380(k)/k = 1/2 infinitely many times, and thus the sequence contains infinitely many infinitary perfect numbers.

Crossrefs

Extensions

a(7)-a(13) from Amiram Eldar, Sep 13 2019
a(14)-a(41) from Amiram Eldar, Mar 26 2023

A185088 a(n) = |n^2 - A185079(n)|.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 4, 1, 10, 1, 4, 1, 4, 9, 1, 1, 6, 1, 10, 7, 20, 1, 24, 1, 4, 9, 24, 1, 36, 1, 4, 33, 22, 25, 4, 1, 4, 9, 20, 1, 132, 1, 16, 45, 28, 1, 8, 1, 4, 9, 26, 1, 36, 1, 104, 49, 34, 1, 0, 1, 4, 49, 16, 25, 36, 1, 34, 57, 140, 1, 84, 1, 4, 9, 76, 73, 36, 1, 26, 1, 80, 1, 16, 11, 128, 9, 4, 1, 180, 105, 64, 55, 92, 25, 36
Offset: 2

Views

Author

Vladimir Shevelev, Feb 18 2011

Keywords

Comments

Zeros a(z)=0 occur at z=6, 60, 120, 360, 816,... For these z, A049417(z) | z^2, but there may be other numbers like 90, 180, 540,... satisfying this divisibility criterion which are not places of zeros (the criterion is necessary, not sufficient), see A185288.

Crossrefs

Formula

a(A050376(n)) = 1.

A185288 Numbers n for which the terms of the multiplicative sequence {n^2/A049417(n)} are integers.

Original entry on oeis.org

1, 6, 60, 90, 120, 180, 360, 540, 816, 840, 1080, 1740, 1980, 2280, 2520, 3060, 3960, 5712, 6120, 8280, 9540, 11880, 12240, 16920, 18360, 19260, 24480, 25296, 25560, 32760, 36720, 42840, 48960, 54672, 57240, 63700, 73440, 74256, 84360, 85680, 97920, 103320, 115560
Offset: 1

Views

Author

Vladimir Shevelev, Feb 20 2011

Keywords

Comments

The sequence contains all infinitary perfect numbers (see A007357).

Examples

			Let n=120. Its representation over distinct terms of A050376 is 2*3*4*5. Therefore A049417(n)=(2+1)*(3+1)*(4+1)*(5+1)=360. Since 360 is a divisor of 120^2, 120 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; aQ[n_] := Divisible[n^2, isigma[n]]; Select[Range[58000], aQ] (* Amiram Eldar, Jul 21 2019 *)

Extensions

More terms from Nathaniel Johnston, Mar 16 2011
More terms from Amiram Eldar, Jul 21 2019
Showing 1-5 of 5 results.