cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A327635 Numbers k such that both k and k+1 are infinitary abundant numbers (A129656).

Original entry on oeis.org

21735, 21944, 43064, 58695, 188055, 262184, 414855, 520695, 567944, 611415, 687015, 764504, 792855, 809864, 812889, 833624, 874664, 911624, 945944, 976184, 991304, 1019655, 1026375, 1065015, 1073709, 1157624, 1201095, 1218944, 1248344, 1254015, 1272375, 1272704
Offset: 1

Views

Author

Amiram Eldar, Sep 20 2019

Keywords

Comments

The least k such that k, k+1 and k+2 are all infinitary abundant numbers is a(75976) = 2666847104.

Examples

			21735 is in the sequence since both 21735 and 21736 are infinitary abundant: isigma(21735) = 46080 > 2 * 21735, and isigma(21736) = 50400 > 2 * 21736 (isigma is the sum of infinitary divisors, A049417).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); abQ[n_] := isigma[n] > 2n; s={}; ab1 = 0; Do[ab2 = abQ[n]; If[ab1 && ab2, AppendTo[s, n-1]]; ab1 = ab2, {n, 2, 10^5}]; s

A306984 Infinitary weird numbers: infinitary abundant numbers (A129656) that are not infinitary pseudoperfect numbers (A306983).

Original entry on oeis.org

70, 4030, 5390, 5830, 7192, 7400, 7912, 9272, 10430, 10570, 10792, 10990, 11410, 11690, 11830, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, 15610, 15890, 16030, 16310, 16730, 16870, 17272, 17570, 17920, 17990, 18410, 18830, 18970, 19390, 19670
Offset: 1

Views

Author

Amiram Eldar, Mar 18 2019

Keywords

Comments

Differs from bi-unitary weird numbers from n >= 32 (a(32) = 17920 is not bi-unitary weird).

Crossrefs

Programs

  • Mathematica
    idivs[x_] := If[x == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[ x ] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] ;s = {}; Do[d = Most[idivs[n]]; If[Total[d]
    				

A372298 Primitive infinitary abundant numbers (definition 1): infinitary abundant numbers (A129656) whose all proper infinitary divisors are infinitary deficient numbers.

Original entry on oeis.org

40, 56, 70, 72, 88, 104, 756, 924, 945, 1092, 1188, 1344, 1386, 1428, 1430, 1596, 1638, 1760, 1870, 2002, 2016, 2080, 2090, 2142, 2176, 2210, 2394, 2432, 2470, 2530, 2584, 2720, 2750, 2944, 2990, 3040, 3128, 3190, 3200, 3230, 3250, 3400, 3410, 3496, 3712, 3770
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2024

Keywords

Examples

			40 is a term since it is an infinitary abundant number and all its proper infinitary divisors, {1, 2, 4, 5, 8, 10, 20}, are infinitary deficient numbers.
24 and 30, which are infinitary abundant numbers, are not primitive, because they are divisible by 6 which is an infinitary perfect number.
		

Crossrefs

Subsequence of A129656 and A372299.
A372300 is a subsequence.
Similar sequences: A071395, A298973, A302573, A307112, A307114, A307115.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]];
    isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; idefQ[n_] := isigma[n] < 2*n; idivs[1] = {1};
    idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])];
    q[n_] := Module[{d = idivs[n]}, Total[d] > 2*n && AllTrue[Most[d], idefQ]]; Select[Range[4000], q]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    idivs(n) = {my(f = factor(n), d = divisors(f), idiv = []); for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    isigma(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)))} ;
    is(n) = isigma(n) > 2*n && select(x -> x < n && isigma(x) >= 2*x, idivs(n)) == [];

A372299 Primitive infinitary abundant numbers (definition 2): infinitary abundant numbers (A129656) having no proper infinitary divisors that are infinitary abundant numbers.

Original entry on oeis.org

24, 30, 40, 42, 54, 56, 66, 70, 72, 78, 88, 96, 102, 104, 114, 138, 150, 174, 186, 222, 246, 258, 282, 294, 318, 354, 366, 402, 420, 426, 438, 474, 486, 498, 534, 540, 582, 606, 618, 642, 654, 660, 678, 726, 756, 762, 780, 786, 822, 834, 894, 906, 924, 942, 945, 960, 978, 990
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2024

Keywords

Examples

			24 is a term since it is an infinitary abundant number and none of its proper infinitary divisors, {1, 2, 3, 4, 6, 8, 12}, are infinitary abundant numbers.
The least infinitary abundant number that is not primitive is 120. It has 3 infinitary divisors, 24, 30, and 40, that are also infinitary abundant numbers.
		

Crossrefs

Subsequence of A129656.
A372298 is a subsequence.
Similar sequences: A091191, A302574, A339940.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]];
    isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; iabQ[n_] := isigma[n] > 2*n; idivs[1] = {1};
    idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])];
    q[n_] := Module[{d = idivs[n]}, Total[d] > 2*n && AllTrue[Most[d], !iabQ[#] &]]; Select[Range[1000], q]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    idivs(n) = {my(f = factor(n), d = divisors(f), idiv = []); for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    isigma(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)))} ;
    is(n) = isigma(n) > 2*n && select(x -> x < n && isigma(x) > 2*x, idivs(n)) == [];

A358483 Numbers k such that k, k+1 and k+2 are all infinitary abundant numbers (A129656).

Original entry on oeis.org

2666847104, 2695309694, 8207456894, 8967010688, 12147283070, 12491149670, 13911605630, 14126720894, 17238119624, 17238704768, 18420223094, 20922243110, 21786026624, 25118874494, 26079705728, 26979164288, 27257009624, 30000503168, 30478990904, 30832299134, 32892108248
Offset: 1

Views

Author

Amiram Eldar, Nov 18 2022

Keywords

Examples

			2666847104 is in the sequence since 2666847104, 2666847105 and 2666847106 are all infinitary abundant numbers (A129656): isigma(2666847104) = 5401952640 > 2 * 2666847104, isigma(2666847105) = 5374656000 > 2 * 2666847105, and isigma(2666847106) = 5419376640 > 2 * 2666847106 (isigma is the sum of infinitary divisors, A049417).
		

Crossrefs

Subsequence of A096536, A129656 and A327635.
Cf. A049417.

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); abQ[n_] := isigma[n] > 2*n; v = Cases[Import["https://oeis.org/A096536/b096536.txt", "Table"], {, }][[;; , 2]]; Select[v, And @@ abQ /@ (# + {0, 1, 2}) &]

A007357 Infinitary perfect numbers.

Original entry on oeis.org

6, 60, 90, 36720, 12646368, 22276800, 126463680, 4201148160, 28770487200, 287704872000, 1446875426304, 2548696550400, 14468754263040, 590325173932032, 3291641594841600, 8854877608980480, 32916415948416000
Offset: 1

Views

Author

Keywords

Comments

Numbers N whose sum of infinitary divisors equals 2*N: A049417(N)=2*N. - Joerg Arndt, Mar 20 2011
6 is the only infinitary perfect number which is also perfect number (A000396). 6 is also the only squarefree infinitary perfect number. - Vladimir Shevelev, Mar 02 2011

Examples

			Let n=90. Its unique expansion over distinct terms of A050376 is 90=2*5*9. Thus the infinitary divisors of 90 are 1,2,5,9,10,18,45,90. The number of such divisors is 2^3, i.e., the cardinality of the set of all subsets of the set {2,5,9}. The sum of such divisors is (2+1)*(5+1)*(9+1)=180 and the sum of proper such divisors is 90=n. Thus 90 is in the sequence. - _Vladimir Shevelev_, Mar 02 2011
		

References

  • G. L. Cohen, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A129656 (infinitary abundant), A129657 (infinitary deficient).

Programs

  • Maple
    isA007357 := proc(n)
        A049417(n) = 2*n ;
        simplify(%) ;
    end proc:
    for n from 1 do
        if isA007357(n) then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, Oct 05 2017
  • Mathematica
    infiPerfQ[n_] := 2n == Total[If[n == 1, 1, Sort @ Flatten @ Outer[ Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m&])]]];
    For[n = 6, True, n += 6, If[infiPerfQ[n], Print[n]]] (* Jean-François Alcover, Feb 08 2021 *)

Formula

{n: A049417(n) = 2*n}. - R. J. Mathar, Mar 18 2011
a(n)==0 (mod 6). Thus there are no odd infinitary perfect numbers. - Vladimir Shevelev, Mar 02 2011

Extensions

More terms from Eric W. Weisstein, Jan 27 2004

A127666 Odd infinitary abundant numbers.

Original entry on oeis.org

945, 10395, 12285, 15015, 16065, 17955, 19305, 19635, 21735, 21945, 23205, 23625, 25245, 25935, 26565, 27405, 28215, 28875, 29295, 29835, 31395, 33345, 33495, 33915, 34125, 34155, 34965, 35805, 37125, 38745, 39585, 40635, 41055, 42315
Offset: 1

Views

Author

Ant King, Jan 26 2007

Keywords

Comments

This is also the sequence of odd integers whose infinitary aliquot sequences initially increase. Based on empirical evidence (up to 10 million), this applies to only about 0.1% of odd integers.
The numbers of terms not exceeding 10^k, for k = 4, 5, ..., are 1, 77, 473, 5703, 53569, 561610, 5525461, 54979537, ... . Apparently, the asymptotic density of this sequence exists and equals 0.0005... . - Amiram Eldar, Sep 09 2022

Examples

			a(5)=16065 because 16065 is the fifth odd number that is exceeded by the sum of its proper infinitary divisors.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;Select[Range[1,50000,2],properinfinitarydivisorsum[ # ]># &] (* end of program *)
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[1, 50000, 2], isigma[#] > 2 # &] (* Amiram Eldar, Jun 09 2019 *)
  • PARI
    A049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[, 2], b = binary(f[k, 2]); prod(j=1, #b, if(b[j], 1+f[k, 1]^(2^(#b-j)), 1)))}
    isok(k) = A049417(k)>2*k&&k%2==1; \\ Jinyuan Wang, Jun 09 2019

Formula

Odd values of n for which A126168(n)>n.

A348274 Noninfinitary abundant numbers: numbers k such that A348271(k) > k.

Original entry on oeis.org

36, 48, 80, 144, 180, 240, 252, 288, 300, 324, 336, 396, 400, 432, 468, 528, 560, 576, 588, 612, 624, 684, 720, 768, 784, 816, 828, 880, 900, 912, 960, 1008, 1040, 1044, 1104, 1116, 1200, 1232, 1260, 1280, 1296, 1332, 1360, 1392, 1440, 1456, 1476, 1488, 1520, 1548
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Comments

The first odd term is a(3577) = 99225.
The number of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 3, 31, 360, 3605, 36160, 360840, 3618980, 36144059, ... Apparently this sequence has an asymptotic density 0.0361...

Examples

			36 is a term since A348271(36) = 41 > 36.
		

Crossrefs

Subsequence of A005101.
Similar sequences: A034683, A064597, A129575, A129656, A292982.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; Select[Range[1500], s[#] > # &]

A348604 Nonexponential abundant numbers: numbers k such that A160135(k) > k.

Original entry on oeis.org

24, 30, 42, 48, 54, 60, 66, 70, 72, 78, 84, 90, 96, 102, 114, 120, 126, 132, 138, 150, 156, 160, 162, 168, 174, 180, 186, 192, 198, 210, 216, 222, 224, 240, 246, 258, 264, 270, 280, 282, 288, 294, 300, 312, 318, 320, 330, 336, 352, 354, 360, 366, 378, 384, 390
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Comments

The smallest odd term is a(1357) = 8505.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 13, 148, 1595, 15688, 158068, 1578957, 15762209, 157745113, 1577808429, ... Apparently this sequence has an asymptotic density 0.157...

Examples

			24 is a term since A160135(24) = 30 > 24.
		

Crossrefs

Subsequence of A005101.
Similar sequences: A034683, A064597, A129575, A129656, A292982, A348274.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; q[n_] := DivisorSigma[1, n] - esigma[n] > n; Select[Range[400], q]

A129657 Infinitary deficient numbers: integers for which A126168(n) < n, or equivalently for which A049417(n) < 2n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84
Offset: 1

Views

Author

Ant King, Apr 29 2007

Keywords

Comments

For large n, the distribution of a(n) is approximately linear and asymptotically satisfies a(n)~1.144n. It follows that the density of the infinitary deficient numbers is 1/1.144, which is about 0.874.

Examples

			The sixth integer that exceeds its proper infinitary divisor sum is 7. Hence a(6)=7.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;InfinitaryDeficientNumberQ[k_]:=If[properinfinitarydivisorsum[k] 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[100], isigma[#] < 2 # &] (* Amiram Eldar, Jun 09 2019 *)
Showing 1-10 of 27 results. Next