cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A348631 Nonexponential weird numbers: nonexponential abundant numbers (A348604) that are not equal to the sum of any subset of their nonexponential divisors.

Original entry on oeis.org

70, 4030, 5830, 10430, 10570, 10990, 11410, 11690, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, 15610, 15890, 16030, 16310, 16730, 16870, 17570, 17990, 18410, 18830, 18970, 19390, 19670, 19810, 20510, 21490, 21770, 21910, 22190, 23170, 23590, 24290
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Examples

			70 is a term since the sum of its nonexponential divisors, {1, 2, 5, 7, 10, 14, 35}, is 74 > 70, and no subset of these divisors sums to 70.
		

Crossrefs

Programs

  • Mathematica
    dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; neDivs[1] = {}; neDivs[n_] := Module[{d = Divisors[n]}, Select[d, ! expDivQ[n, #] &]]; nesigma[n_] := Total@neDivs[n]; neAbundantQ[n_] := nesigma[n] > n; neWeirdQ[n_] := neAbundantQ[n] && Module[{d = neDivs[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] == 0]; Select[Range[6000], neWeirdQ]

A380929 Numbers k such that A380845(k) > 2*k.

Original entry on oeis.org

36, 72, 84, 140, 144, 168, 180, 264, 270, 280, 288, 300, 336, 360, 372, 392, 450, 520, 528, 532, 540, 558, 560, 576, 594, 600, 612, 620, 672, 720, 744, 756, 780, 784, 840, 900, 930, 1036, 1040, 1050, 1056, 1064, 1068, 1080, 1092, 1116, 1120, 1134, 1152, 1170, 1180, 1188, 1200
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

Analogous to abundant numbers (A005101) with A380845 instead of A000203.

Examples

			36 is a term since A380845(36) = 84 > 2 * 36 = 72.
		

Crossrefs

Subsequence of A005101.
Subsequences: A380847, A380848, A380930, A380931.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k]; Select[Range[1200], q]
  • PARI
    isok(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k;}

A357605 Numbers k such that A162296(k) > 2*k.

Original entry on oeis.org

36, 48, 72, 80, 96, 108, 120, 144, 160, 162, 168, 180, 192, 200, 216, 224, 240, 252, 264, 270, 280, 288, 300, 312, 320, 324, 336, 352, 360, 378, 384, 392, 396, 400, 408, 416, 432, 448, 450, 456, 468, 480, 486, 500, 504, 528, 540, 552, 560, 576, 588, 594, 600, 612
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2022

Keywords

Comments

The least odd term is a(470) = A357607(1) = 4725.
The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 5, 92, 1011, 10160, 102125, 1022881, 10231151, 102249758, 1022781199, 10229781638, ... . Apparently, the asymptotic density of this sequence exists and equals 0.102... .
An analog of abundant numbers, in which the divisor sum is restricted to nonsquarefree divisors. - Peter Munn, Oct 26 2022

Examples

			36 is a term since A162296(36) = 79 > 2*36.
		

Crossrefs

Cf. A162296.
Subsequence of A005101 and A013929.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; Select[Range[2, 1000], q]

A379029 Modified exponential abundant numbers: numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 120, 138, 150, 168, 174, 186, 210, 222, 246, 258, 270, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

All the squarefree abundant numbers (A087248) are terms since A241405(k) = A000203(k) for a squarefree number k.
If k is a term and m is coprime to k them k*m is also a term.
The numbers of terms that do no exceed 10^k, for k = 2, 3, ..., are 5, 67, 767, 7595, 76581, 764321, 7644328, 76468851, 764630276, ... . Apparently, the asymptotic density of this sequence exists and equals 0.07646... .

Crossrefs

Subsequence of A005101.
Subsequences: A034683, A087248, A379030, A379031.
Similar sequences: A064597, A129575, A129656, A292982, A348274, A348604.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1000], meAbQ]
  • PARI
    is(n) = {my(f=factor(n)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*n;}

A348605 Odd nonexponential abundant numbers: odd numbers k such that A160135(k) > k.

Original entry on oeis.org

8505, 10395, 12285, 15015, 16065, 17955, 19635, 21735, 21945, 23205, 25515, 25935, 26565, 28875, 31185, 31395, 33495, 33915, 34125, 35805, 36855, 39585, 41055, 42315, 42735, 45885, 47355, 48195, 49665, 50505, 51765, 53865, 54285, 55965, 56595, 58695, 61215, 64155
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Comments

The odd terms of A348604.
The numbers of terms not exceeding 10^k, for k = 4, 5, ..., are 1, 51, 360, 4117, 39803, 418663, 4099004, ... Apparently this sequence has an asymptotic density 0.0004...

Examples

			8505 is a term since A160135(8505) = 8862 > 8505.
		

Crossrefs

Cf. A160135.
Subsequence of A005231 and A348604.
Similar sequences: A094889, A127666, A129485, A293186, A321147, A348275.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; q[n_] := DivisorSigma[1, n] - esigma[n] > n; Select[Range[1, 65000, 2], q]

A357685 Numbers k such that A293228(k) > k.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 102, 114, 132, 138, 140, 156, 174, 186, 204, 210, 222, 228, 246, 258, 276, 282, 318, 330, 348, 354, 366, 372, 390, 402, 420, 426, 438, 444, 462, 474, 492, 498, 510, 516, 534, 546, 564, 570, 582, 606, 618, 636, 642, 654, 660, 678, 690
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2022

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 7, 79, 843, 8230, 83005, 826875, 8275895, 82790525, 827718858, 8276571394, ... . Apparently, the asymptotic density of this sequence exists and equals 0.0827... .

Examples

			30 is a term since its aliquot squarefree divisors are {1, 2, 3, 5, 6, 10, 15} and their sum is 42 > 30.
60 is a term since its aliquot squarefree divisors are {1, 2, 3, 5, 6, 10, 15, 30} and their sum is 72 > 60.
		

Crossrefs

Disjoint union of A087248 and A357686.
Subsequence of A005101.

Programs

  • Mathematica
    s[n_] := Times @@ (1 + (f = FactorInteger[n])[[;; , 1]]) - If[AllTrue[f[[;;, 2]], # == 1 &], n, 0]; Select[Range[2, 1000], s[#] > # &]
  • PARI
    is(n) = {my(f = factor(n), s); s = prod(i=1, #f~, f[i,1]+1); if(n==1 || vecmax(f[,2]) == 1, s -= n); s > n};

A348629 Nonexponential highly abundant numbers: numbers m such that nesigma(m) > nesigma(k) for all k < m, where nesigma(k) is the sum of nonexponential divisors of n (A160135).

Original entry on oeis.org

1, 6, 10, 12, 18, 24, 30, 42, 48, 54, 60, 78, 84, 90, 96, 120, 168, 192, 210, 240, 270, 312, 330, 360, 384, 420, 480, 630, 672, 840, 960, 1056, 1080, 1248, 1320, 1440, 1560, 1680, 1890, 1920, 2280, 2310, 2400, 2520, 2640, 2688, 3000, 3120, 3240, 3360, 4200, 4320
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

The corresponding record values are 1, 6, 8, 10, 15, 30, 42, 54, 58, 60, 78, ... (see the link for more values).

Examples

			The first 6 values of nesigma(k), for k = 1 to 6 are 1, 1, 1, 1, 1 and 6. The record values, 1 and 6, occur at 1 and 6, the first 2 terms of this sequence.
		

Crossrefs

The nonexponential version of A002093.
Similar sequences: A285614, A292983, A327634, A328134, A329883, A348272.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[1] = 1; s[n_] := DivisorSigma[1, n] - esigma[n]; seq = {}; sm = -1; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^4}]; seq

A360525 Numbers k such that A360522(k) > 2*k.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 90, 102, 114, 120, 126, 132, 138, 140, 150, 156, 168, 174, 180, 186, 204, 210, 222, 228, 246, 252, 258, 276, 282, 294, 300, 318, 330, 348, 354, 360, 366, 372, 390, 402, 420, 426, 438, 444, 462, 474, 492, 498, 510, 516, 534, 546, 564
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

First differs from A308127 at n = 15.
Analogous to abundant numbers (A005101) with A360522 instead of A000203.
Subsequence of A005101 because A360522(n) <= A000203(n) for all n.
The least odd term is a(1698) = A360526(1) = 15015.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 8, 95, 1135, 10890, 110867, 1104596, 11048123, 110534517, 1105167384, 11051009278, ... . Apparently, the asymptotic density of this sequence exists and equals 0.1105...

Examples

			30 is a term since A360522(30) = 72 > 2*30.
		

Crossrefs

Subsequence of A005101.

Programs

  • Mathematica
    f[p_, e_] := p^e + e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := s[n] > 2*n; Select[Range[1000], q]
  • PARI
    is(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]) > 2*n;}

A348606 Numbers k such that k and k+1 are both nonexponential abundant numbers.

Original entry on oeis.org

21735, 76544, 170624, 301664, 345344, 348704, 382304, 739935, 862784, 1218944, 1262624, 1272704, 1314495, 1370655, 1376864, 1539615, 1558304, 1707615, 1718144, 1761375, 1845375, 1890944, 1926015, 2100735, 2132864, 2223584, 2415104, 2463615, 2581215, 2675295, 2747744
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Examples

			21735 is a term since A160135(21735) = 21930 > 21735 and A160135(21736) = 23230 > 21736.
		

Crossrefs

Cf. A160135.
Subsequence of A096399 and A348604.
Similar sequences: A318167, A327635, A327942, A331412, A348276.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; q[n_] := DivisorSigma[1, n] - esigma[n] > n; Select[Range[1, 3*10^6], q[#] && q[#+1] &]

A348627 Numbers that are both exponential and nonexponential abundant numbers.

Original entry on oeis.org

3600, 4500, 6300, 7056, 8100, 8820, 9900, 14700, 21780, 22500, 25200, 30420, 31500, 35280, 39600, 46800, 49500, 52020, 56700, 58500, 61200, 61740, 64980, 68400, 69300, 76500, 77616, 81900, 82800, 85500, 88200, 89100, 91728, 95220, 97020, 103500, 104400, 105300
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Examples

			3600 is a term since A051377(3600) = 7920 > 2*3600 and A160135(3600) = 4573 > 3600.
		

Crossrefs

Intersection of A129575 and A348604.
Subsequence of A068403.
Similar sequence: A348523.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; Select[Range[10^5], (e = esigma[#]) > 2*# && DivisorSigma[1, #] - e > # &]
Showing 1-10 of 11 results. Next