cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A127662 Integers whose infinitary aliquot sequences end in an infinitary perfect number (A007357).

Original entry on oeis.org

6, 30, 42, 54, 60, 66, 72, 78, 90, 100, 140, 148, 152, 192, 194, 196, 208, 220, 238, 244, 252, 268, 274, 292, 296, 298, 300, 336, 348, 350, 360, 364, 372, 374, 380, 382, 386, 400, 416, 420, 424, 476, 482, 492, 516, 520, 532, 540, 542, 544, 550, 572, 576, 578, 586
Offset: 1

Views

Author

Ant King, Jan 26 2007

Keywords

Examples

			a(5) = 60 because the fifth number whose infinitary aliquot sequence ends in an infinitary perfect number is 60.
6 -> 6 ...
30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
54 -> 66 -> 78 -> 90 -> 90 -> ..
60 -> 60 -> ..
66 -> 78 -> 90 -> 90 -> ..
72 -> 78 -> 90 -> 90 -> ..
78 -> 90 -> 90 -> ..
90 -> 90 -> ..
100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
102 -> 114 -> 126 -> 114 -> ..  cycle but not in the sequence
114 -> 126 -> 114 -> .. cycle but not in the sequence
126 -> 114 -> 126 -> ..
140 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
148 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
152 -> 148 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
192 -> 148 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
194 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
196 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
208 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
210 -> 366 -> 378 -> 582 -> 594 -> 846 -> 594 -> ..
220 -> 140 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
238 -> 194 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
244 -> 66 -> 78 -> 90 -> 90 -> ..
246 -> 258 -> 270 -> 450 -> 330 -> 534 -> 546 -> 798 -> 1122 -> 1470 -> 2130 -> 3054 -> 3066 -> 4038 -> 4050 -> 2346 -> 2838 -> 3498 -> 4278 -> 4938 -> 4950 -> 4410 -> 4590 -> 8370 -> 14670 -> 14850 -> 22590 -> 22770 -> 29070 -> 35730 -> 35910 -> 79290 -> 79470 -> 79650 -> 107550 -> 79650 -> ..
		

Crossrefs

Programs

  • Maple
    isA007357 := proc(n)
        A049417(n) = 2*n ;
        simplify(%) ;
    end proc:
    isA127662 := proc(n)
        local trac,x;
        x := n ;
        trac := [x] ;
        while true do
            x := A049417(x)-trac[-1] ;
            if x = 0 then
                return false ;
            elif x in trac then
                return isA007357(x) ;
            end if;
            trac := [op(trac),x] ;
        end do:
    end proc:
    for n from 1 do
        if isA127662(n) then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, Oct 05 2017
  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];InfinitaryPerfectNumberQ[0]=False;InfinitaryPerfectNumberQ[k_Integer] :=If[properinfinitarydivisorsum[k]==k,True,False];Select[Range[500],InfinitaryPerfectNumberQ[Last[iTrajectory[ # ]]] &]
    s[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; s[0] = s[1] = 0; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-1]] != n && v[[-2]] == v[[-1]] > 0]; Select[Range[3200], q] (* Amiram Eldar, Mar 11 2023 *)

Extensions

More terms from Amiram Eldar, Mar 11 2023

A187043 Number of factors in expansion of infinitary perfect numbers (A007357) over distinct terms of A050376.

Original entry on oeis.org

2, 3, 3, 5, 6, 7, 7, 7, 8, 9, 8, 9, 9, 10, 10, 11, 11, 12, 13, 12, 13, 14, 14, 15, 16, 17, 18, 19, 19, 19, 20, 21, 21, 23, 22, 23
Offset: 1

Views

Author

Vladimir Shevelev, Mar 02 2011

Keywords

Comments

All terms beyond a(17) should be regarded conjectural, because they reach beyond the known terms in A007357. - R. J. Mathar, Mar 30 2011

Examples

			Consider A007357(3)=90. It is a unique product 2*5*9 of distinct terms of A050376. Thus a(3)=3.
		

Crossrefs

Formula

a(n) = A064547(A007357(n)). - R. J. Mathar, Mar 30 2011

A186963 Number of prime factors in the expansion of the infinitary perfect number A007357(n) over distinct terms of A050376.

Original entry on oeis.org

2, 2, 2, 3, 4, 3, 4, 5, 4, 4, 6, 5, 6, 7, 6, 7, 6
Offset: 1

Views

Author

Vladimir Shevelev, Mar 02 2011

Keywords

Comments

The total number of factors in the decomposition of A007357(n) in terms of A050376 is A187043(n). The subset of factors which are ordinary primes are counted here.

Examples

			The unique expansion of A007357(2)= 60 as a product of terms of A050376 is 3*4*5. Two of these factors, namely 3 and 5, are primes (A000040), so a(2)=2.
		

Crossrefs

Formula

a(n) = A162642(A007357(n)). - R. J. Mathar, Mar 30 2011

A037445 Number of infinitary divisors (or i-divisors) of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 8, 2, 8, 4, 4, 4, 4, 4, 8, 2, 4, 4, 4, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.
The smallest number m with exactly 2^n infinitary divisors is A037992(n); for these values m, a(m) increases also to a new record. - Bernard Schott, Mar 09 2023

Examples

			For n = 8, n = 2^3 = 2^"11" (writing 3 in binary) so the infinitary divisors are 2^"00" = 1, 2^"01" = 2, 2^"10" = 4 and 2^"11" = 8, so a(8) = 4.
For n = 90, n = 2*5*9 where 2,5,9 are in A050376, so a(90) = 2^3 = 8.
		

Crossrefs

Programs

  • Haskell
    a037445 = product . map (a000079 . a000120) . a124010_row
    -- Reinhard Zumkeller, Mar 19 2013
    
  • Maple
    A037445 := proc(n)
        local a,p;
        a := 1 ;
        for p in ifactors(n)[2] do
            a := a*2^wt(p[2]) ;
        end do:
        a ;
    end proc: # R. J. Mathar, May 16 2016
  • Mathematica
    Table[Length@((Times @@ (First[it]^(#1 /. z -> List)) & ) /@
    Flatten[Outer[z, Sequence @@ bitty /@
    Last[it = Transpose[FactorInteger[k]]], 1]]), {k, 2, 240}]
    bitty[k_] := Union[Flatten[Outer[Plus, Sequence @@ ({0, #1} & ) /@ Union[2^Range[0, Floor[Log[2, k]]]*Reverse[IntegerDigits[k, 2]]]]]]
    y[n_] := Select[Range[0, n], BitOr[n, # ] == n & ] divisors[Infinity][1] := {1}
    divisors[Infinity][n_] := Sort[Flatten[Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^y[m])]]] Length /@ divisors[Infinity] /@ Range[105] (* Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 29 2005 *)
    a[1] = 1; a[n_] := Times @@ Flatten[ 2^DigitCount[#, 2, 1]&  /@ FactorInteger[n][[All, 2]] ]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Aug 19 2013, after Reinhard Zumkeller *)
  • PARI
    A037445(n) = factorback(apply(a -> 2^hammingweight(a), factorint(n)[,2])) \\ Andrew Lelechenko, May 10 2014
    
  • Python
    from sympy import factorint
    def wt(n): return bin(n).count("1")
    def a(n):
        f=factorint(n)
        return 2**sum([wt(f[i]) for i in f]) # Indranil Ghosh, May 30 2017
  • Scheme
    (define (A037445 n) (if (= 1 n) n (* (A001316 (A067029 n)) (A037445 (A028234 n))))) ;; Antti Karttunen, May 28 2017
    

Formula

Multiplicative with a(p^e) = 2^A000120(e). - David W. Wilson, Sep 01 2001
Let n = q_1*...*q_k, where q_1,...,q_k are different terms of A050376. Then a(n) = 2^k (the number of subsets of a set with k elements is 2^k). - Vladimir Shevelev, Feb 19 2011.
a(n) = Product_{k=1..A001221(n)} A000079(A000120(A124010(n,k))). - Reinhard Zumkeller, Mar 19 2013
From Antti Karttunen, May 28 2017: (Start)
a(n) = A286575(A156552(n)). [Because multiplicative with a(p^e) = A001316(e).]
a(n) = 2^A064547(n). (End)
a(A037992(n)) = 2^n. - Bernard Schott, Mar 10 2023

Extensions

Corrected and extended by Naohiro Nomoto, Jun 21 2001

A129656 Infinitary abundant numbers: integers for which A126168 (n)>n, or equivalently for which A049417 (n)>2n.

Original entry on oeis.org

24, 30, 40, 42, 54, 56, 66, 70, 72, 78, 88, 96, 102, 104, 114, 120, 138, 150, 168, 174, 186, 210, 216, 222, 246, 258, 264, 270, 280, 282, 294, 312, 318, 330, 354, 360, 366, 378, 384, 390, 402, 408, 420, 426, 438, 440, 456, 462, 474, 480, 486, 498
Offset: 1

Views

Author

Ant King, Apr 29 2007

Keywords

Comments

For large n, the distribution of a(n) is approximately linear and asymptotically satisfies a(n)~7.95n. It follows that the density of the infinitary abundant numbers is 1/7.95, which is about 0.126.

Examples

			The third integer that is exceeded by its proper infinitary divisor sum is 40. Hence a(3)=40.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;InfinitaryAbundantNumberQ[k_]:=If[properinfinitarydivisorsum[k]>k,True,False];Select[Range[500],InfinitaryAbundantNumberQ[ # ] &]
    fun[p_, e_] := Module[{ b = IntegerDigits[e, 2]}, m=Length[b]; Product[If[b[[j]] > 0, 1+p^(2^(m-j)), 1], {j, 1, m}]]; isigma[1]=1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[1000], isigma[#]>2# &] (* Amiram Eldar, May 12 2019 *)

A129657 Infinitary deficient numbers: integers for which A126168(n) < n, or equivalently for which A049417(n) < 2n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84
Offset: 1

Views

Author

Ant King, Apr 29 2007

Keywords

Comments

For large n, the distribution of a(n) is approximately linear and asymptotically satisfies a(n)~1.144n. It follows that the density of the infinitary deficient numbers is 1/1.144, which is about 0.874.

Examples

			The sixth integer that exceeds its proper infinitary divisor sum is 7. Hence a(6)=7.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;InfinitaryDeficientNumberQ[k_]:=If[properinfinitarydivisorsum[k] 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[100], isigma[#] < 2 # &] (* Amiram Eldar, Jun 09 2019 *)

A306983 Infinitary pseudoperfect numbers: numbers n equal to the sum of a subset of their proper infinitary divisors.

Original entry on oeis.org

6, 24, 30, 40, 42, 54, 56, 60, 66, 72, 78, 88, 90, 96, 102, 104, 114, 120, 138, 150, 168, 174, 186, 210, 216, 222, 246, 258, 264, 270, 280, 282, 294, 312, 318, 330, 354, 360, 366, 378, 384, 390, 402, 408, 420, 426, 438, 440, 456, 462, 474, 480, 486, 498, 504
Offset: 1

Views

Author

Amiram Eldar, Mar 18 2019

Keywords

Comments

Subsequence of A005835.

Crossrefs

Programs

  • Mathematica
    idivs[x_] := If[x == 1, 1, Sort@Flatten@Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; s = {}; Do[d = Most[idivs[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[s, n]], {n, 2, 1000}]; s

A322609 Numbers k such that s(k) = 2*k, where s(k) is the sum of divisors of k that have a square factor (A162296).

Original entry on oeis.org

24, 54, 112, 150, 294, 726, 1014, 1734, 1984, 2166, 3174, 5046, 5766, 8214, 10086, 11094, 13254, 16854, 19900, 20886, 22326, 26934, 30246, 31974, 32512, 37446, 41334, 47526, 56454, 61206, 63654, 68694, 71286, 76614, 96774, 102966, 112614, 115926, 133206
Offset: 1

Views

Author

Amiram Eldar, Dec 20 2018

Keywords

Comments

This sequence is infinite since 6*p^2 is included for all primes p. Terms that are not of the form 6*p^2: 112, 1984, 19900, 32512, 134201344, ...
Includes 4*k if k is an even perfect number: see A000396. - Robert Israel, Jan 06 2019
From Amiram Eldar, Oct 01 2022: (Start)
24 = 6*prime(1)^2 = 4*A000396(1) is the only term that is common to the two forms that are mentioned above.
19900 is the only term below 10^11 which is not of any of these two forms. Are there any other such terms?
All the known nonunitary perfect numbers (A064591) are also of the form 4*k, where k is an even perfect number.
Equivalently, numbers k such that A325314(k) = -k. (End)

Examples

			24 is a term since A162296(24) = 48 = 2*24.
		

Crossrefs

Subsequence of A005101 and A013929.
Numbers k such that A162296(k) = m*k: A005117 (m=0), A001248 (m=1), this sequence (m=2), A357493 (m=3), A357494 (m=4).

Programs

  • Maple
    filter:= proc(n) convert(remove(numtheory:-issqrfree,numtheory:-divisors(n)),`+`)=2*n end proc:
    select(filter, [$1..200000]); # Robert Israel, Jan 06 2019
  • Mathematica
    s[1]=0; s[n_] := DivisorSigma[1,n] - Times@@(1+FactorInteger[n][[;;,1]]); Select[Range[10000], s[#] == 2# &]
  • PARI
    s(n) = sumdiv(n, d, d*(1-moebius(d)^2)); \\ A162296
    isok(n) = s(n) == 2*n; \\ Michel Marcus, Dec 20 2018
    
  • Python
    from sympy import divisors, factorint
    A322609_list = [k for k in range(1,10**3) if sum(d for d in divisors(k,generator=True) if max(factorint(d).values(),default=1) >= 2) == 2*k] # Chai Wah Wu, Sep 19 2021

A324707 Tri-unitary perfect numbers: numbers k such that tsigma(k) = 2k, where tsigma(k) is the sum of the tri-unitary divisors of k (A324706).

Original entry on oeis.org

6, 60, 90, 36720, 47520, 8173440, 22276800, 126463680, 597542400, 4201148160, 287704872000, 1632485836800
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2019

Keywords

Comments

Also in the sequence is 21623407345626345971712000.
a(13) > 5*10^12. - Giovanni Resta, Mar 14 2019

Examples

			36720 is in the sequence since its sum of tri-unitary divisors is A324706(36720) = 73440 = 2 * 36720.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3, (p^4-1)/(p-1), If[e==6, (p^8-1)/(p^2-1), p^e+1]]; tsigma[1]=1; tsigma[n_]:= Times @@ f @@@ FactorInteger[n]; Select[Range[50000], tsigma[#]==2# &]

Extensions

a(11)-a(12) from Giovanni Resta, Mar 14 2019

A038182 3-infinitary perfect numbers k: 3-i-sigma(k) = 2*k, where 3-i-sigma = A049418.

Original entry on oeis.org

6, 28, 3024, 6552, 27578880, 49266240, 49095705098695680
Offset: 1

Views

Author

Keywords

Comments

Similarly, we have 3-i-sigma(x)/x = r for the following numbers: r = 3 for x = 672, 13104, 4021920, 55157760, 98532480, 459818240, 372667889664, 7267023848448, 1178296922368696320, 5498718971053916160, ...; r = 4 for x = 2178540; r = 3/2 for x = 2, 24, 9192960, 196382820394782720. (Values above 10^7 from Yasutoshi Kohmoto, some terms may be missing.) - M. F. Hasler, Sep 21 2022

Examples

			Factorizations: 2*3, 2^2*7, 2^4*3^3*7, 2^3*3^2*7*13, 2^9*3^4*5*7*19, 2^6*3*5*19*37*73, 2^10*3^6*5*19^2*127*379*757.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{d = IntegerDigits[e, 3]}, m = Length[d]; Product[(p^((d[[j]] + 1)*3^(m - j)) - 1)/(p^(3^(m - j)) - 1), {j, 1, m}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[7000], s[#] == 2*# &] (* Amiram Eldar, Oct 24 2024 *)
  • PARI
    is_A038182(n)=A049418(n)==2*n \\ M. F. Hasler, Sep 21 2022

Extensions

Definition shortened by R. J. Mathar, Oct 06 2010
Showing 1-10 of 35 results. Next