A127662 Integers whose infinitary aliquot sequences end in an infinitary perfect number (A007357).
6, 30, 42, 54, 60, 66, 72, 78, 90, 100, 140, 148, 152, 192, 194, 196, 208, 220, 238, 244, 252, 268, 274, 292, 296, 298, 300, 336, 348, 350, 360, 364, 372, 374, 380, 382, 386, 400, 416, 420, 424, 476, 482, 492, 516, 520, 532, 540, 542, 544, 550, 572, 576, 578, 586
Offset: 1
Examples
a(5) = 60 because the fifth number whose infinitary aliquot sequence ends in an infinitary perfect number is 60. 6 -> 6 ... 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> .. 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> .. 54 -> 66 -> 78 -> 90 -> 90 -> .. 60 -> 60 -> .. 66 -> 78 -> 90 -> 90 -> .. 72 -> 78 -> 90 -> 90 -> .. 78 -> 90 -> 90 -> .. 90 -> 90 -> .. 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> .. 102 -> 114 -> 126 -> 114 -> .. cycle but not in the sequence 114 -> 126 -> 114 -> .. cycle but not in the sequence 126 -> 114 -> 126 -> .. 140 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> .. 148 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> .. 152 -> 148 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> .. 192 -> 148 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> .. 194 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> .. 196 -> 54 -> 66 -> 78 -> 90 -> 90 -> .. 208 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> .. 210 -> 366 -> 378 -> 582 -> 594 -> 846 -> 594 -> .. 220 -> 140 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> .. 238 -> 194 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> .. 244 -> 66 -> 78 -> 90 -> 90 -> .. 246 -> 258 -> 270 -> 450 -> 330 -> 534 -> 546 -> 798 -> 1122 -> 1470 -> 2130 -> 3054 -> 3066 -> 4038 -> 4050 -> 2346 -> 2838 -> 3498 -> 4278 -> 4938 -> 4950 -> 4410 -> 4590 -> 8370 -> 14670 -> 14850 -> 22590 -> 22770 -> 29070 -> 35730 -> 35910 -> 79290 -> 79470 -> 79650 -> 107550 -> 79650 -> ..
Links
- Amiram Eldar, Table of n, a(n) for n = 1..75
- Graeme L. Cohen, On an integer's infinitary divisors, Math. Comp., 54 (1990), 395-411.
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Broken link]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
Programs
-
Maple
isA007357 := proc(n) A049417(n) = 2*n ; simplify(%) ; end proc: isA127662 := proc(n) local trac,x; x := n ; trac := [x] ; while true do x := A049417(x)-trac[-1] ; if x = 0 then return false ; elif x in trac then return isA007357(x) ; end if; trac := [op(trac),x] ; end do: end proc: for n from 1 do if isA127662(n) then printf("%d,\n",n) ; end if; end do: # R. J. Mathar, Oct 05 2017
-
Mathematica
ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];InfinitaryPerfectNumberQ[0]=False;InfinitaryPerfectNumberQ[k_Integer] :=If[properinfinitarydivisorsum[k]==k,True,False];Select[Range[500],InfinitaryPerfectNumberQ[Last[iTrajectory[ # ]]] &] s[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; s[0] = s[1] = 0; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-1]] != n && v[[-2]] == v[[-1]] > 0]; Select[Range[3200], q] (* Amiram Eldar, Mar 11 2023 *)
Extensions
More terms from Amiram Eldar, Mar 11 2023
Comments