cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A038148 Number of 3-infinitary divisors of n: if n = Product p(i)^r(i) and d = Product p(i)^s(i), each s(i) has a digit a <= b in its ternary expansion everywhere that the corresponding r(i) has a digit b, then d is a 3-infinitary-divisor of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 2, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 2, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 4, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 4, 4, 4, 4, 4, 2, 12, 2, 4, 6, 3, 4, 8, 2, 6, 4, 8, 2, 6, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4, 4, 2, 12, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 8, 2, 4, 8
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If e = sum d_k 3^k, then a(p^e) = prod (d_k+1). - Christian G. Bower, May 19 2005

Examples

			2^3*3 is a 3-infinitary-divisor of 2^5*3^2 because 2^3*3 = 2^10*3^1 and 2^5*3^2 = 2^12*3^2 in ternary expanded power. All corresponding digits satisfy the condition. 1 <= 1, 0 <= 2, 1 <= 2.
		

Crossrefs

Programs

Formula

a(1) = 1; for n > 1, a(n) = A006047(A067029(n)) * a(A028234(n)). [After Christian G. Bower's 2005 comment.] - Antti Karttunen, May 28 2017

Extensions

More terms from Naohiro Nomoto, Jun 21 2001
Data section further extended to 105 terms by Antti Karttunen, May 28 2017

A097464 5-infinitary perfect numbers: numbers k such that 5-infinitary-sigma(k) = 2*k.

Original entry on oeis.org

6, 28, 496, 47520, 288288, 308474880
Offset: 1

Views

Author

Keywords

Comments

Here 5-infinitary-sigma(k) means sum of 5-infinitary-divisors of k. If k = Product p_i^r_i and d = Product p_i^s_i, each s_i has a digit a <= b in its 5-ary expansion everywhere that the corresponding r_i has a digit b, then d is a 5-infinitary-divisor of k.
Is it certain that 308474880 is the 6th term? M. F. Hasler, Nov 20 2010
Data is verified. a(7) > 10^11, if it exists. - Amiram Eldar, Oct 24 2024

Examples

			Factorizations: 2*3, 2^2*7, 2^4*31, 2^5*3^3*5*11, 2^5*3^2*7*11*13, 2^10*3*5*7*19*151.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{d = IntegerDigits[e, 5]}, m = Length[d]; Product[(p^((d[[j]] + 1)*5^(m - j)) - 1)/(p^(5^(m - j)) - 1), {j, 1, m}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[300000], s[#] == 2*# &] (* Amiram Eldar, Oct 24 2024 *)

Formula

{k: A097863(k) = 2*k}.

Extensions

Missing a(4) inserted by R. J. Mathar, Nov 20 2010

A074849 4-infinitary perfect numbers: numbers k such that 4-infinitary-sigma(k) = 2*k.

Original entry on oeis.org

6, 28, 36720, 222768, 12646368, 5154170112, 34725010231296
Offset: 1

Views

Author

Yasutoshi Kohmoto, Sep 10 2002

Keywords

Comments

Here 4-infinitary-sigma(k) means sum of 4-infinitary-divisors of k. If k = Product p(i)^r(i) and d = Product p(i)^s(i), each s(i) has a digit a <= b in its 4-ary expansion everywhere that the corresponding r(i) has a digit b, then d is a 4-infinitary-divisor of k.

Examples

			Factorizations: 2*3, 2^2*7, 2^4*3^3*5*17, 2^4*3^2*7*13*17, 2^5*3^4*7*17*41, 2^8*3^2*7*13^2*31*61, 2^12*3^5*7*11*41*43*257.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{d = IntegerDigits[e, 4]}, m = Length[d]; Product[(p^((d[[j]] + 1)*4^(m - j)) - 1)/(p^(4^(m - j)) - 1), {j, 1, m}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[300000], s[#] == 2*# &] (* Amiram Eldar, Oct 24 2024 *)

Formula

{k: A074847(k) = 2*k}. - R. J. Mathar, Mar 13 2024

A331108 Zeckendorf-infinitary perfect numbers: numbers k such that A331107(k) = 2*k.

Original entry on oeis.org

6, 60, 90, 3024, 133056, 1330560, 6879600, 28828800, 302702400, 698544000, 11763214848
Offset: 1

Views

Author

Amiram Eldar, Jan 09 2020

Keywords

Comments

No more terms below 4*10^10.

Examples

			6 is a term since A331107(6) = 12 = 2*6.
		

Crossrefs

Programs

  • Mathematica
    fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; Fibonacci[1 + Position[Reverse@fr, ?(# == 1 &)]]]; f[p, e_] := p^fb[e]; zsigma[1] = 1; zsigma[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); zPerfectQ[n_] := zsigma[n] == 2 n; Select[Range[10^4], zPerfectQ] (* after Robert G. Wilson v at A014417 *)

A331111 Dual-Zeckendorf-infinitary perfect numbers: numbers k such that A331110(k) = 2*k.

Original entry on oeis.org

6, 60, 90, 655200, 28828800, 238140000, 10478160000
Offset: 1

Views

Author

Amiram Eldar, Jan 09 2020

Keywords

Comments

No more terms below 2.8*10^10.

Examples

			6 is a term since A331110(6) = 12 = 2*6.
		

Crossrefs

Programs

  • Mathematica
    fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
    dualZeck[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, {}, v[[i[[1, 1]] ;; -1]]]];
    f[p_, e_] := p^Fibonacci[1 + Position[Reverse @ dualZeck[e], _?(# == 1 &)]];
    dzsigma[1] = 1; dzsigma[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); seqQ[n_] := dzsigma[n] == 2n; Select[Range[10^6], seqQ]

A376889 Numbers k such that A376888(k) = 2*k.

Original entry on oeis.org

6, 60, 90, 336, 5040, 87360, 764400, 11466000, 620568000, 9478560000, 14217840000, 22805874000
Offset: 1

Views

Author

Amiram Eldar, Oct 08 2024

Keywords

Comments

a(12) > 7*10^10, if it exists.
28279283760000, 282792837600000 and 1583639890560000 are also terms.
k! is a term for k = 3 and 7, and for no other factorial of k < 10^4.

Crossrefs

Cf. A376888.
Subsequence of A023196.
Similar sequences: A007357, A038182, A074849, A097464, A331108, A331111.

Programs

  • Mathematica
    ff[q_, s_] := (q^(s + 1) - 1)/(q - 1); f[p_, e_] := Module[{k = e, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, If[r > 0, AppendTo[s, {p^(m - 1)!, r}];]; m++]; Times @@ ff @@@ s]; fsigma[1] = 1; fsigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^6], fsigma[#] == 2*# &]
  • PARI
    fdigits(n) = {my(k = n, m = 2, r, s = []); while([k, r] = divrem(k, m); k != 0 || r != 0, s = concat(s, r); m++); s;}
    fsigma(n) = {my(f = factor(n), p = f[, 1], e = f[, 2], d); prod(i = 1, #p, prod(j = 1, #d=fdigits(e[i]), (p[i]^(j!*(d[j]+1)) - 1)/(p[i]^j! - 1)));}
    is(k) = fsigma(k) == 2*k;
Showing 1-6 of 6 results.