cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A097863 Sum of 5-infinitary divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 33, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 99, 84, 144, 68, 126, 96, 144, 72, 195, 74, 114, 124
Offset: 1

Views

Author

Keywords

Comments

If n=Product p_i^r_i and d=Product p_i^s_i, each s_i has a digit a<=b in its 5-ary expansion everywhere that the corresponding r_i has a digit b, then d is a 5-infinitary-divisor of n.

Examples

			a(32) = a(2^10) = 2^10 + 2^0 = 32 + 1 = 33, in 5-ary expansion. This is the first term which is different from sigma(n).
		

Crossrefs

Programs

  • Haskell
    following Bower and Harris, cf. A049418:
    a097863 1 = 1
    a097863 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f p e = product $ zipWith div
               (map (subtract 1 . (p ^)) $
                    zipWith (*) a000351_list $ map (+ 1) $ a031235_row e)
               (map (subtract 1 . (p ^)) a000351_list)
    -- Reinhard Zumkeller, Sep 18 2015
  • Maple
    A097863 := proc(n) option remember; local ifa, a, p, e, d, k ; ifa := ifactors(n)[2] ; a := 1 ; if nops(ifa) = 1 then p := op(1, op(1, ifa)) ; e := op(2, op(1, ifa)) ; d := convert(e, base, 5) ; for k from 0 to nops(d)-1 do a := a*(p^((1+op(k+1, d))*5^k)-1)/(p^(5^k)-1) ; end do: else for d in ifa do a := a*procname( op(1, d)^op(2, d)) ; end do: return a; end if; end proc:
  • Mathematica
    f[p_, e_] := Module[{d = IntegerDigits[e, 5]}, m = Length[d]; Product[(p^((d[[j]] + 1)*5^(m - j)) - 1)/(p^(5^(m - j)) - 1), {j, 1, m}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 09 2020 *)

Formula

Denote by P_5={p^5^k} the two-parameter set when k=0,1,... and p runs prime values. Then every n has a unique representation of the form n=prod q_i prod (r_j)^2 prod (s_k)^3 prod (t_m)^4, where q_i, r_j, s_k, t_m are distinct elements of P_5. Using this representation, we have a(n)=prod (q_i+1)prod ((r_j)^2+r_j+1)prod ((s_k)^3+(s_k)^2+s_k+1) prod ((t_m)^4+(t_m)^3+(t_m)^2+t_m+1). - Vladimir Shevelev, May 08 2013

A038182 3-infinitary perfect numbers k: 3-i-sigma(k) = 2*k, where 3-i-sigma = A049418.

Original entry on oeis.org

6, 28, 3024, 6552, 27578880, 49266240, 49095705098695680
Offset: 1

Views

Author

Keywords

Comments

Similarly, we have 3-i-sigma(x)/x = r for the following numbers: r = 3 for x = 672, 13104, 4021920, 55157760, 98532480, 459818240, 372667889664, 7267023848448, 1178296922368696320, 5498718971053916160, ...; r = 4 for x = 2178540; r = 3/2 for x = 2, 24, 9192960, 196382820394782720. (Values above 10^7 from Yasutoshi Kohmoto, some terms may be missing.) - M. F. Hasler, Sep 21 2022

Examples

			Factorizations: 2*3, 2^2*7, 2^4*3^3*7, 2^3*3^2*7*13, 2^9*3^4*5*7*19, 2^6*3*5*19*37*73, 2^10*3^6*5*19^2*127*379*757.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{d = IntegerDigits[e, 3]}, m = Length[d]; Product[(p^((d[[j]] + 1)*3^(m - j)) - 1)/(p^(3^(m - j)) - 1), {j, 1, m}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[7000], s[#] == 2*# &] (* Amiram Eldar, Oct 24 2024 *)
  • PARI
    is_A038182(n)=A049418(n)==2*n \\ M. F. Hasler, Sep 21 2022

Extensions

Definition shortened by R. J. Mathar, Oct 06 2010

A074849 4-infinitary perfect numbers: numbers k such that 4-infinitary-sigma(k) = 2*k.

Original entry on oeis.org

6, 28, 36720, 222768, 12646368, 5154170112, 34725010231296
Offset: 1

Views

Author

Yasutoshi Kohmoto, Sep 10 2002

Keywords

Comments

Here 4-infinitary-sigma(k) means sum of 4-infinitary-divisors of k. If k = Product p(i)^r(i) and d = Product p(i)^s(i), each s(i) has a digit a <= b in its 4-ary expansion everywhere that the corresponding r(i) has a digit b, then d is a 4-infinitary-divisor of k.

Examples

			Factorizations: 2*3, 2^2*7, 2^4*3^3*5*17, 2^4*3^2*7*13*17, 2^5*3^4*7*17*41, 2^8*3^2*7*13^2*31*61, 2^12*3^5*7*11*41*43*257.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{d = IntegerDigits[e, 4]}, m = Length[d]; Product[(p^((d[[j]] + 1)*4^(m - j)) - 1)/(p^(4^(m - j)) - 1), {j, 1, m}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[300000], s[#] == 2*# &] (* Amiram Eldar, Oct 24 2024 *)

Formula

{k: A074847(k) = 2*k}. - R. J. Mathar, Mar 13 2024

A331108 Zeckendorf-infinitary perfect numbers: numbers k such that A331107(k) = 2*k.

Original entry on oeis.org

6, 60, 90, 3024, 133056, 1330560, 6879600, 28828800, 302702400, 698544000, 11763214848
Offset: 1

Views

Author

Amiram Eldar, Jan 09 2020

Keywords

Comments

No more terms below 4*10^10.

Examples

			6 is a term since A331107(6) = 12 = 2*6.
		

Crossrefs

Programs

  • Mathematica
    fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; Fibonacci[1 + Position[Reverse@fr, ?(# == 1 &)]]]; f[p, e_] := p^fb[e]; zsigma[1] = 1; zsigma[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); zPerfectQ[n_] := zsigma[n] == 2 n; Select[Range[10^4], zPerfectQ] (* after Robert G. Wilson v at A014417 *)

A331111 Dual-Zeckendorf-infinitary perfect numbers: numbers k such that A331110(k) = 2*k.

Original entry on oeis.org

6, 60, 90, 655200, 28828800, 238140000, 10478160000
Offset: 1

Views

Author

Amiram Eldar, Jan 09 2020

Keywords

Comments

No more terms below 2.8*10^10.

Examples

			6 is a term since A331110(6) = 12 = 2*6.
		

Crossrefs

Programs

  • Mathematica
    fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
    dualZeck[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, {}, v[[i[[1, 1]] ;; -1]]]];
    f[p_, e_] := p^Fibonacci[1 + Position[Reverse @ dualZeck[e], _?(# == 1 &)]];
    dzsigma[1] = 1; dzsigma[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); seqQ[n_] := dzsigma[n] == 2n; Select[Range[10^6], seqQ]

A376889 Numbers k such that A376888(k) = 2*k.

Original entry on oeis.org

6, 60, 90, 336, 5040, 87360, 764400, 11466000, 620568000, 9478560000, 14217840000, 22805874000
Offset: 1

Views

Author

Amiram Eldar, Oct 08 2024

Keywords

Comments

a(12) > 7*10^10, if it exists.
28279283760000, 282792837600000 and 1583639890560000 are also terms.
k! is a term for k = 3 and 7, and for no other factorial of k < 10^4.

Crossrefs

Cf. A376888.
Subsequence of A023196.
Similar sequences: A007357, A038182, A074849, A097464, A331108, A331111.

Programs

  • Mathematica
    ff[q_, s_] := (q^(s + 1) - 1)/(q - 1); f[p_, e_] := Module[{k = e, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, If[r > 0, AppendTo[s, {p^(m - 1)!, r}];]; m++]; Times @@ ff @@@ s]; fsigma[1] = 1; fsigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^6], fsigma[#] == 2*# &]
  • PARI
    fdigits(n) = {my(k = n, m = 2, r, s = []); while([k, r] = divrem(k, m); k != 0 || r != 0, s = concat(s, r); m++); s;}
    fsigma(n) = {my(f = factor(n), p = f[, 1], e = f[, 2], d); prod(i = 1, #p, prod(j = 1, #d=fdigits(e[i]), (p[i]^(j!*(d[j]+1)) - 1)/(p[i]^j! - 1)));}
    is(k) = fsigma(k) == 2*k;
Showing 1-6 of 6 results.