A038182
3-infinitary perfect numbers k: 3-i-sigma(k) = 2*k, where 3-i-sigma = A049418.
Original entry on oeis.org
6, 28, 3024, 6552, 27578880, 49266240, 49095705098695680
Offset: 1
Factorizations: 2*3, 2^2*7, 2^4*3^3*7, 2^3*3^2*7*13, 2^9*3^4*5*7*19, 2^6*3*5*19*37*73, 2^10*3^6*5*19^2*127*379*757.
-
f[p_, e_] := Module[{d = IntegerDigits[e, 3]}, m = Length[d]; Product[(p^((d[[j]] + 1)*3^(m - j)) - 1)/(p^(3^(m - j)) - 1), {j, 1, m}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[7000], s[#] == 2*# &] (* Amiram Eldar, Oct 24 2024 *)
-
is_A038182(n)=A049418(n)==2*n \\ M. F. Hasler, Sep 21 2022
A097464
5-infinitary perfect numbers: numbers k such that 5-infinitary-sigma(k) = 2*k.
Original entry on oeis.org
6, 28, 496, 47520, 288288, 308474880
Offset: 1
Factorizations: 2*3, 2^2*7, 2^4*31, 2^5*3^3*5*11, 2^5*3^2*7*11*13, 2^10*3*5*7*19*151.
-
f[p_, e_] := Module[{d = IntegerDigits[e, 5]}, m = Length[d]; Product[(p^((d[[j]] + 1)*5^(m - j)) - 1)/(p^(5^(m - j)) - 1), {j, 1, m}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[300000], s[#] == 2*# &] (* Amiram Eldar, Oct 24 2024 *)
A331108
Zeckendorf-infinitary perfect numbers: numbers k such that A331107(k) = 2*k.
Original entry on oeis.org
6, 60, 90, 3024, 133056, 1330560, 6879600, 28828800, 302702400, 698544000, 11763214848
Offset: 1
6 is a term since A331107(6) = 12 = 2*6.
-
fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; Fibonacci[1 + Position[Reverse@fr, ?(# == 1 &)]]]; f[p, e_] := p^fb[e]; zsigma[1] = 1; zsigma[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); zPerfectQ[n_] := zsigma[n] == 2 n; Select[Range[10^4], zPerfectQ] (* after Robert G. Wilson v at A014417 *)
A331111
Dual-Zeckendorf-infinitary perfect numbers: numbers k such that A331110(k) = 2*k.
Original entry on oeis.org
6, 60, 90, 655200, 28828800, 238140000, 10478160000
Offset: 1
6 is a term since A331110(6) = 12 = 2*6.
-
fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
dualZeck[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, {}, v[[i[[1, 1]] ;; -1]]]];
f[p_, e_] := p^Fibonacci[1 + Position[Reverse @ dualZeck[e], _?(# == 1 &)]];
dzsigma[1] = 1; dzsigma[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); seqQ[n_] := dzsigma[n] == 2n; Select[Range[10^6], seqQ]
A376889
Numbers k such that A376888(k) = 2*k.
Original entry on oeis.org
6, 60, 90, 336, 5040, 87360, 764400, 11466000, 620568000, 9478560000, 14217840000, 22805874000
Offset: 1
-
ff[q_, s_] := (q^(s + 1) - 1)/(q - 1); f[p_, e_] := Module[{k = e, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, If[r > 0, AppendTo[s, {p^(m - 1)!, r}];]; m++]; Times @@ ff @@@ s]; fsigma[1] = 1; fsigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^6], fsigma[#] == 2*# &]
-
fdigits(n) = {my(k = n, m = 2, r, s = []); while([k, r] = divrem(k, m); k != 0 || r != 0, s = concat(s, r); m++); s;}
fsigma(n) = {my(f = factor(n), p = f[, 1], e = f[, 2], d); prod(i = 1, #p, prod(j = 1, #d=fdigits(e[i]), (p[i]^(j!*(d[j]+1)) - 1)/(p[i]^j! - 1)));}
is(k) = fsigma(k) == 2*k;
Showing 1-5 of 5 results.
Comments