cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A324708 Lesser of tri-unitary amicable numbers pair: numbers (m, n) such that tsigma(m) = tsigma(n) = m + n, where tsigma(n) is the sum of the tri-unitary divisors of n (A324706).

Original entry on oeis.org

114, 594, 1140, 5940, 8640, 10744, 12285, 13500, 44772, 60858, 62100, 67095, 67158, 79296, 79650, 79750, 118500, 142310, 143808, 177750, 185368, 298188, 308220, 356408, 377784, 462330, 545238, 600392, 608580, 609928, 624184, 635624, 643336, 643776, 669900
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2019

Keywords

Comments

The larger counterparts are in A324709.

Examples

			114 is in the sequence since it is the lesser of the amicable pair (114, 126): tsigma(114) = tsigma(126) = 114 + 126.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3, (p^4-1)/(p-1), If[e==6, (p^8-1)/(p^2-1), p^e+1]]; tsigma[1]=1; tsigma[n_]:= Times @@ f @@@ FactorInteger[n]; s[n_] := tsigma[n] - n; seq={}; Do[m=s[n]; If[m>n && s[m]==n, AppendTo[seq, n]] ,{n,1,700000}]; seq

A324709 Larger of tri-unitary amicable numbers pair: numbers (m, n) such that tsigma(m) = tsigma(n) = m + n, where tsigma(n) is the sum of the tri-unitary divisors of n (A324706).

Original entry on oeis.org

126, 846, 1260, 8460, 11760, 10856, 14595, 17700, 49308, 83142, 62700, 71145, 73962, 83904, 107550, 88730, 131100, 168730, 149952, 196650, 203432, 306612, 365700, 399592, 419256, 548550, 721962, 669688, 831420, 686072, 691256, 712216, 652664, 661824, 827700
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2019

Keywords

Comments

The terms are ordered according to their lesser counterparts (A324708).

Examples

			126 is in the sequence since it is the larger of the amicable pair (114, 126): tsigma(114) = tsigma(126) = 114 + 126.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3, (p^4-1)/(p-1), If[e==6, (p^8-1)/(p^2-1), p^e+1]]; tsigma[1]=1; tsigma[n_]:= Times @@ f @@@ FactorInteger[n]; s[n_] := tsigma[n] - n; seq={}; Do[m=s[n]; If[m>n && s[m]==n, AppendTo[seq, m]] ,{n,1,700000}]; seq

A322609 Numbers k such that s(k) = 2*k, where s(k) is the sum of divisors of k that have a square factor (A162296).

Original entry on oeis.org

24, 54, 112, 150, 294, 726, 1014, 1734, 1984, 2166, 3174, 5046, 5766, 8214, 10086, 11094, 13254, 16854, 19900, 20886, 22326, 26934, 30246, 31974, 32512, 37446, 41334, 47526, 56454, 61206, 63654, 68694, 71286, 76614, 96774, 102966, 112614, 115926, 133206
Offset: 1

Views

Author

Amiram Eldar, Dec 20 2018

Keywords

Comments

This sequence is infinite since 6*p^2 is included for all primes p. Terms that are not of the form 6*p^2: 112, 1984, 19900, 32512, 134201344, ...
Includes 4*k if k is an even perfect number: see A000396. - Robert Israel, Jan 06 2019
From Amiram Eldar, Oct 01 2022: (Start)
24 = 6*prime(1)^2 = 4*A000396(1) is the only term that is common to the two forms that are mentioned above.
19900 is the only term below 10^11 which is not of any of these two forms. Are there any other such terms?
All the known nonunitary perfect numbers (A064591) are also of the form 4*k, where k is an even perfect number.
Equivalently, numbers k such that A325314(k) = -k. (End)

Examples

			24 is a term since A162296(24) = 48 = 2*24.
		

Crossrefs

Subsequence of A005101 and A013929.
Numbers k such that A162296(k) = m*k: A005117 (m=0), A001248 (m=1), this sequence (m=2), A357493 (m=3), A357494 (m=4).

Programs

  • Maple
    filter:= proc(n) convert(remove(numtheory:-issqrfree,numtheory:-divisors(n)),`+`)=2*n end proc:
    select(filter, [$1..200000]); # Robert Israel, Jan 06 2019
  • Mathematica
    s[1]=0; s[n_] := DivisorSigma[1,n] - Times@@(1+FactorInteger[n][[;;,1]]); Select[Range[10000], s[#] == 2# &]
  • PARI
    s(n) = sumdiv(n, d, d*(1-moebius(d)^2)); \\ A162296
    isok(n) = s(n) == 2*n; \\ Michel Marcus, Dec 20 2018
    
  • Python
    from sympy import divisors, factorint
    A322609_list = [k for k in range(1,10**3) if sum(d for d in divisors(k,generator=True) if max(factorint(d).values(),default=1) >= 2) == 2*k] # Chai Wah Wu, Sep 19 2021

A324706 The sum of the tri-unitary divisors of n.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 15, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 60, 26, 42, 40, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 90, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 120, 72, 120, 80, 90, 60, 120, 62, 96, 80, 85, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2019

Keywords

Comments

A divisor d of n is tri-unitary if the greatest common bi-unitary divisor of d and n/d is 1.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3, (p^4-1)/(p-1), If[e==6, (p^8-1)/(p^2-1), p^e+1]]; a[1]=1; a[n_]:= Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    A324706(n) = { my(f = factor(n)); prod(i=1, #f~, if(3==f[i,2], sigma(f[i,1]^f[i,2]), if(6==f[i,2], ((f[i,1]^8)-1)/((f[i,1]^2)-1), 1+(f[i,1]^f[i,2])))); }; \\ Antti Karttunen, Mar 12 2019

Formula

Multiplicative with a(p^3) = 1 + p + p^2 + p^3, a(p^6) = 1 + p^2 + p^4 + p^6, and a(p^e) = 1 + p^e otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^3 + 1/p^4 - 2/p^6 + 2/p^8 - 1/p^9 - 1/p^12 + 1/p^13) = 0.72189237802... . - Amiram Eldar, Nov 24 2022

A335385 The number of tri-unitary divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 04 2020

Keywords

Comments

A divisor d of k is tri-unitary if the greatest common bi-unitary divisor of d and k/d is 1.
Differs from A037445 at n = 32, 96, 128, 160, 224, ...

Examples

			a(4) = 2 since 4 has 2 tri-unitary divisors, 1 and 4. 2 is not a tri-unitary divisor of 4 since the greatest common bi-unitary divisor of 2 and 4/2 = 2 is 2 and not 1.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3 || e == 6, 4, 2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 3 || x == 6, 4, 2), factor(n)[, 2])); \\ Amiram Eldar, Dec 18 2023

Formula

Multiplicative with a(p^e) = 4 if e = 3 or 6, and a(p^e) = 2 otherwise.

A335387 Tri-unitary harmonic numbers: numbers k such that the harmonic mean of the tri-unitary divisors of k is an integer.

Original entry on oeis.org

1, 6, 45, 60, 90, 270, 420, 630, 2970, 5460, 8190, 9100, 15925, 27300, 36720, 40950, 46494, 47520, 54600, 81900, 95550, 136500, 163800, 172900, 204750, 232470, 245700, 257040, 332640, 409500, 464940, 491400, 646425, 716625, 790398, 791700, 819000, 900900, 929880
Offset: 1

Views

Author

Amiram Eldar, Jun 04 2020

Keywords

Comments

Equivalently, numbers k such that A324706(k) | (k * A335385(k)).
Differs from A063947 from n >= 18.

Examples

			45 is a term since its tri-unitary divisors are {1, 5, 9, 45} and their harmonic mean, 3, in an integer.
		

Crossrefs

A324707 is a subsequence.
Analogous sequences: A001599 (harmonic numbers), A006086 (unitary), A063947 (infinitary), A286325 (bi-unitary), A319745 (nonunitary).

Programs

  • Mathematica
    f1[p_, e_] := If[e == 3 || e == 6, 4, 2]; f2[p_, e_] := If[e == 3, (p^4 - 1)/(p - 1), If[e == 6, (p^8 - 1)/(p^2 - 1), p^e + 1]]; f[p_, e_] := p^e * f1[p, e]/f2[p, e]; tuhQ[1] = True; tuhQ[n_] := IntegerQ[Times @@ (f @@@ FactorInteger[n])]; Select[Range[10^4], tuhQ]

A360524 Numbers k such that A360522(k) = 2*k.

Original entry on oeis.org

6, 12, 198, 240, 264, 270, 396, 540, 6720, 7920, 11880, 13770, 27540, 221760, 337440, 605880, 2500344, 6072570, 11135520, 12145140, 267193080, 441692160, 1112629770, 2225259540, 14575841280, 48955709880
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

Analogous to perfect numbers (A000396) with A360522 instead of A000203.
a(27) > 10^11, if it exists.

Examples

			6 is a term since A360522(6) = 12 = 2 * 6.
		

Crossrefs

Similar sequences: A000396, A002827, A007357, A054979, A322486, A324707.

Programs

  • Mathematica
    f[p_, e_] := p^e + e; q[n_] := Times @@ f @@@ FactorInteger[n] == 2*n; Select[Range[10^6], q]
  • PARI
    is(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]) == 2*n;}
Showing 1-7 of 7 results.