cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A335386 Tri-unitary highly composite numbers: where the number of tri-unitary divisors (A335385) increases to a record.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 18378360, 349188840, 8031343320, 200783583000, 5822723907000, 180504441117000, 6678664321329000, 273825237174489000, 11774485198503027000, 553400804329642269000, 27116639412152471181000, 1437181888844080972593000
Offset: 1

Views

Author

Amiram Eldar, Jun 04 2020

Keywords

Crossrefs

Analogous sequences: A002182 (highly composite), A002110 (unitary), A037992 (infinitary), A293185 (bi-unitary), A318278 (exponential), A306736 (exponential infinitary), A307845 (exponential unitary), A309141 (nonunitary), A322484 (semi-unitary).
Cf. A335385.

Programs

  • Mathematica
    f[p_, e_] := If[e == 3 || e == 6, 4, 2]; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); dm = 0; s = {}; Do[If[(d1 = d[n]) > dm, dm = d1; AppendTo[s, n]], {n, 1, 1100000}]; s

Formula

A335385(a(n)) = 2^(n-1).

A335387 Tri-unitary harmonic numbers: numbers k such that the harmonic mean of the tri-unitary divisors of k is an integer.

Original entry on oeis.org

1, 6, 45, 60, 90, 270, 420, 630, 2970, 5460, 8190, 9100, 15925, 27300, 36720, 40950, 46494, 47520, 54600, 81900, 95550, 136500, 163800, 172900, 204750, 232470, 245700, 257040, 332640, 409500, 464940, 491400, 646425, 716625, 790398, 791700, 819000, 900900, 929880
Offset: 1

Views

Author

Amiram Eldar, Jun 04 2020

Keywords

Comments

Equivalently, numbers k such that A324706(k) | (k * A335385(k)).
Differs from A063947 from n >= 18.

Examples

			45 is a term since its tri-unitary divisors are {1, 5, 9, 45} and their harmonic mean, 3, in an integer.
		

Crossrefs

A324707 is a subsequence.
Analogous sequences: A001599 (harmonic numbers), A006086 (unitary), A063947 (infinitary), A286325 (bi-unitary), A319745 (nonunitary).

Programs

  • Mathematica
    f1[p_, e_] := If[e == 3 || e == 6, 4, 2]; f2[p_, e_] := If[e == 3, (p^4 - 1)/(p - 1), If[e == 6, (p^8 - 1)/(p^2 - 1), p^e + 1]]; f[p_, e_] := p^e * f1[p, e]/f2[p, e]; tuhQ[1] = True; tuhQ[n_] := IntegerQ[Times @@ (f @@@ FactorInteger[n])]; Select[Range[10^4], tuhQ]
Showing 1-2 of 2 results.