cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A348342 Noninfinitary highly composite numbers: where the number of noninfinitary divisors (A348341) increases to a record.

Original entry on oeis.org

1, 4, 12, 16, 36, 48, 144, 240, 576, 720, 1680, 2880, 3600, 5040, 11520, 14400, 15120, 20160, 25200, 45360, 55440, 80640, 100800, 166320, 176400, 226800, 277200, 498960, 720720, 887040, 1108800, 1587600, 1940400, 2494800, 3603600, 6486480, 9979200, 11531520, 14414400
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

The record numbers of noninfinitary divisors are 0, 1, 2, 3, 5, 6, 11, 12, 13, 22, 24, 26, 37, 44, 46, ... (see the link for more values).

Crossrefs

Cf. A348341.
Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    nid[1] = 0; nid[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]]; dm = -1; s = {}; Do[If[(d = nid[n]) > dm, dm = d; AppendTo[s, n]], {n, 1, 10^6}]; s

A348632 Nonexponential highly composite numbers: where the number of nonexponential divisors (A160097) increases to a record.

Original entry on oeis.org

1, 6, 12, 24, 30, 60, 120, 210, 240, 360, 420, 720, 840, 1260, 1680, 2520, 3360, 5040, 7560, 9240, 10080, 15120, 18480, 25200, 27720, 36960, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 480480, 498960, 554400, 665280, 720720, 1081080, 1441440
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

The corresponding record values are 1, 3, 4, 6, 7, 10, 14, 15, 17, 20, 22, 24, ... (see the link for more values).

Crossrefs

Cf. A160097.
Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    f1[p_, e_] := e + 1; f2[p_, e_] := DivisorSigma[0, e]; ned[1] = 1; ned[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; dm = -1; s = {}; Do[If[(d = ned[n]) > dm, dm = d; AppendTo[s, n]], {n, 1, 10^6}]; s

A353899 Indices of records in A353898.

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 60, 180, 420, 900, 1260, 4620, 6300, 13860, 44100, 55440, 69300, 180180, 485100, 720720, 900900, 3063060, 6306300, 12252240, 15315300, 58198140, 107207100, 232792560, 290990700, 1163962800, 2036934900, 5354228880, 6692786100, 22406283900
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Comments

First differs from A333931 at n=23.
The corresponding record values are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 48, 54, 72, 81, 96, 108, 144, 162, ... (see the link for more values).

Crossrefs

Subsequence of A025487 and A138302.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    f[p_, e_] := Floor[Log2[e]] + 2; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; sm = 0; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^6}]; seq

A358263 Numbers with a record number of noninfinitary square divisors.

Original entry on oeis.org

1, 16, 144, 256, 1296, 2304, 20736, 57600, 331776, 518400, 2822400, 8294400, 12960000, 25401600, 132710400, 207360000, 228614400, 406425600, 635040000, 2057529600, 3073593600, 6502809600, 10160640000, 27662342400, 31116960000, 51438240000, 76839840000, 248961081600
Offset: 1

Views

Author

Amiram Eldar, Nov 06 2022

Keywords

Comments

Numbers m such that A358261(m) > A358261(k) for all k < m.
The corresponding record values are 0, 1, 2, 3, 5, 6, 11, 12, 13, 22, 24, 26, 37, 44, 46, 47, 48, ... (see the link for more values).

Crossrefs

Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386, A348632, A358253.

Programs

  • Mathematica
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^DigitCount[If[OddQ[e], e - 1, e], 2, 1]; f[1] = 0; f[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; s = {}; fmax = -1; Do[If[(fn = f[n]) > fmax, fmax = fn; AppendTo[s, n]], {n, 1, 6*10^5}]; s
  • PARI
    s(n) = {my(f = factor(n));  prod(i=1, #f~, 1+f[i,2]\2) - prod(i=1, #f~, 2^hammingweight(if(f[i,2]%2, f[i,2]-1, f[i,2])))};
    lista(nmax) = {my(smax = -1, sn); for(n = 1, nmax, sn = s(n); if(sn > smax, smax = sn; print1(n, ", "))); }
Showing 1-4 of 4 results.