cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A129656 Infinitary abundant numbers: integers for which A126168 (n)>n, or equivalently for which A049417 (n)>2n.

Original entry on oeis.org

24, 30, 40, 42, 54, 56, 66, 70, 72, 78, 88, 96, 102, 104, 114, 120, 138, 150, 168, 174, 186, 210, 216, 222, 246, 258, 264, 270, 280, 282, 294, 312, 318, 330, 354, 360, 366, 378, 384, 390, 402, 408, 420, 426, 438, 440, 456, 462, 474, 480, 486, 498
Offset: 1

Views

Author

Ant King, Apr 29 2007

Keywords

Comments

For large n, the distribution of a(n) is approximately linear and asymptotically satisfies a(n)~7.95n. It follows that the density of the infinitary abundant numbers is 1/7.95, which is about 0.126.

Examples

			The third integer that is exceeded by its proper infinitary divisor sum is 40. Hence a(3)=40.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;InfinitaryAbundantNumberQ[k_]:=If[properinfinitarydivisorsum[k]>k,True,False];Select[Range[500],InfinitaryAbundantNumberQ[ # ] &]
    fun[p_, e_] := Module[{ b = IntegerDigits[e, 2]}, m=Length[b]; Product[If[b[[j]] > 0, 1+p^(2^(m-j)), 1], {j, 1, m}]]; isigma[1]=1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[1000], isigma[#]>2# &] (* Amiram Eldar, May 12 2019 *)

A327635 Numbers k such that both k and k+1 are infinitary abundant numbers (A129656).

Original entry on oeis.org

21735, 21944, 43064, 58695, 188055, 262184, 414855, 520695, 567944, 611415, 687015, 764504, 792855, 809864, 812889, 833624, 874664, 911624, 945944, 976184, 991304, 1019655, 1026375, 1065015, 1073709, 1157624, 1201095, 1218944, 1248344, 1254015, 1272375, 1272704
Offset: 1

Views

Author

Amiram Eldar, Sep 20 2019

Keywords

Comments

The least k such that k, k+1 and k+2 are all infinitary abundant numbers is a(75976) = 2666847104.

Examples

			21735 is in the sequence since both 21735 and 21736 are infinitary abundant: isigma(21735) = 46080 > 2 * 21735, and isigma(21736) = 50400 > 2 * 21736 (isigma is the sum of infinitary divisors, A049417).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); abQ[n_] := isigma[n] > 2n; s={}; ab1 = 0; Do[ab2 = abQ[n]; If[ab1 && ab2, AppendTo[s, n-1]]; ab1 = ab2, {n, 2, 10^5}]; s

A129657 Infinitary deficient numbers: integers for which A126168(n) < n, or equivalently for which A049417(n) < 2n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84
Offset: 1

Views

Author

Ant King, Apr 29 2007

Keywords

Comments

For large n, the distribution of a(n) is approximately linear and asymptotically satisfies a(n)~1.144n. It follows that the density of the infinitary deficient numbers is 1/1.144, which is about 0.874.

Examples

			The sixth integer that exceeds its proper infinitary divisor sum is 7. Hence a(6)=7.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;InfinitaryDeficientNumberQ[k_]:=If[properinfinitarydivisorsum[k] 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[100], isigma[#] < 2 # &] (* Amiram Eldar, Jun 09 2019 *)

A127667 Odd integers that do not generate monotonically decreasing infinitary aliquot sequences.

Original entry on oeis.org

945, 1743, 2175, 2655, 2823, 2865, 3105, 3375, 3537, 3585, 3729, 4209, 4665, 5775, 6559, 6681, 6969, 7257, 7263, 7785, 8457, 8583, 9657, 10017, 10047, 10113, 10395, 10599, 10743, 12285, 13815, 14055, 14145, 15015, 15597, 16065, 17955, 18529, 18777, 19305, 19635
Offset: 1

Views

Author

Ant King, Jan 26 2007

Keywords

Comments

Based on empirical evidence, approximately 98.9 % of the infinitary aliquot sequences generated by the odd integers are monotonically decreasing. This sequence represents the 1.1 % of odd integers that are the exceptions to this.

Examples

			a(5)=2823 because 2823 is the fifth odd integer whose infinitary aliquot sequence is not monotonically decreasing.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];u[n_]:=Table[n[[k+1]]
    				

Extensions

More terms from Amiram Eldar, Sep 16 2019

A348275 Odd noninfinitary abundant numbers: the odd terms of A348274.

Original entry on oeis.org

99225, 1091475, 1289925, 1334025, 1576575, 1686825, 1715175, 1863225, 1885275, 2027025, 2061675, 2282175, 2304225, 2395575, 2401245, 2436525, 2480625, 2650725, 2723175, 2789325, 2877525, 2962575, 3031875, 3075975, 3132675, 3185325, 3186225, 3296475, 3353805, 3501225
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Comments

The number of terms below 10^k, for k = 5, 6, ..., are 1, 113, 630, 7771, 73685, ... Apparently this sequence has an asymptotic density 0.000007...

Examples

			99225 is a term since A348271(99225) = 107207 > 99225.
		

Crossrefs

Cf. A348271.
Subsequence of A005231 and A348274.
Similar sequences: A094889, A127666, A129485, A293186, A321147.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; Select[Range[1, 2*10^6, 2], s[#] > # &]

A333950 Odd recursive abundant numbers: odd numbers k such that A333926(k) > 2*k.

Original entry on oeis.org

1575, 2205, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 8085, 8415, 8925, 9135, 9555, 9765, 11025, 11655, 12705, 12915, 13545, 14805, 15015, 16695, 17325, 18585, 19215, 19635, 20475, 21105, 21945, 22365, 22995, 23205, 24255, 24885, 25935, 26145, 26565, 26775
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2020

Keywords

Examples

			1575 is a term since it is odd and A333926(1575) = 3224 > 2 * 1575.
		

Crossrefs

Intersection of A005408 and A333928.
Cf. A333926.
Analogous sequences: A005231, A094889 (nonunitary), A129485 (unitary), A127666 (infinitary), A293186 (bi-unitary), A321147 (exponential).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[2*Range[15000] + 1, recDivSum[#] > 2*# &]

A360526 Odd numbers k such that A360522(k) > 2*k.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035, 116655
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

First differs from A112643, A129485, A249263 at n = 46: a(46) = 165165 is not a term of these sequences.

Examples

			15015 is a term since A360522(15015) = 32256 > 2*15015.
		

Crossrefs

Cf. A360522.
Subsequence of A005101, A005231 and A360525.

Programs

  • Mathematica
    f[p_, e_] := p^e + e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := s[n] > 2*n; Select[Range[1, 10^5, 2], q]
  • PARI
    isab(n) = { my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]) > 2*n;}
    is(n) = n%2 && isab(n);

A127663 Infinitary aspiring numbers.

Original entry on oeis.org

30, 42, 54, 66, 72, 78, 100, 140, 148, 152, 192, 194, 196, 208, 220, 238, 244, 252, 268, 274, 292, 296, 298, 300, 336, 348, 350, 360, 364, 372, 374, 380, 382, 386, 400, 416, 420, 424, 476, 482, 492, 516, 520, 532, 540, 542, 544, 550, 572, 576, 578, 586, 592
Offset: 1

Views

Author

Ant King, Jan 26 2007

Keywords

Comments

Numbers whose infinitary aliquot sequences end in an infinitary perfect number, but are not infinitary perfect numbers themselves.

Examples

			a(5) = 72 because the fifth non-infinitary perfect number whose infinitary aliquot sequence ends in an infinitary perfect number is 72.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];InfinitaryPerfectNumberQ[0]=False;InfinitaryPerfectNumberQ[k_Integer] :=If[properinfinitarydivisorsum[k]==k,True,False];Select[Range[750],InfinitaryPerfectNumberQ[Last[iTrajectory[ # ]]] && !InfinitaryPerfectNumberQ[ # ]&]
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; s[n_] := Times @@ f @@@ FactorInteger[n] - n; s[0] = s[1] = 0; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, n != v[[-2]] == v[[-1]] > 0]; Select[Range[839], q]  (* Amiram Eldar, Mar 11 2023 *)

A127665 Numbers whose infinitary aliquot sequences end in an infinitary amicable pair.

Original entry on oeis.org

102, 114, 126, 210, 246, 258, 270, 318, 330, 342, 354, 366, 378, 388, 390, 408, 426, 436, 438, 450, 474, 484, 486, 498, 510, 522, 534, 536, 546, 552, 570, 582, 594, 600, 606, 618, 630, 642, 648, 654, 666, 672, 702, 726, 738, 750, 760, 762, 774, 786, 798
Offset: 1

Views

Author

Ant King, Jan 26 2007

Keywords

Comments

Sometimes called the infinitary 2-cycle attractor set.

Examples

			a(5)=246 because 246 is the fifth number whose infinitary aliquot sequence ends in an infinitary amicable pair.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];InfinitaryAmicableNumberQ[k_]:=If[Nest[properinfinitarydivisorsum,k,2]==k && !properinfinitarydivisorsum[k]==k,True,False];Select[Range[820],InfinitaryAmicableNumberQ[Last[iTrajectory[ # ]]] &]

A335055 Odd infinitary abundant numbers whose infinitary abundancy is closer to 2 than that of any smaller odd infinitary abundant number.

Original entry on oeis.org

945, 29835, 33345, 43065, 46035, 49875, 83265, 354585, 359205, 361515, 366135, 382305, 389235, 400785, 403095, 407715, 414645, 416955, 423885, 430815, 437745, 442365, 77967015, 132335385, 210124665, 719709375, 724239285, 1756753845, 9665740455, 10394173335
Offset: 1

Views

Author

Amiram Eldar, May 21 2020

Keywords

Comments

The infinitary abundancy of a number k is isigma(k)/k, where isigma(k) is the sum of infinitary divisors of k (A049417).

Examples

			The infinitary abundancies of the first terms are 2.031..., 2.027..., 2.015..., 2.006..., 2.001..., ...
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; seq = {}; r = 3; Do[s = isigma[n]/n; If[s > 2 && s < r, AppendTo[seq, n]; r = s], {n, 1, 10^5, 2}]; seq
Showing 1-10 of 18 results. Next