cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371422 Numbers whose aliquot-like sequence based on the largest aliquot divisor of the sum of divisors of n (A371418) terminates in a cycle of length 2.

Original entry on oeis.org

12, 14, 15, 23, 29, 42, 44, 48, 54, 56, 60, 62, 65, 66, 69, 70, 72, 75, 76, 77, 78, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 95, 99, 102, 107, 108, 110, 111, 112, 114, 115, 117, 118, 119, 120, 123, 124, 125, 128, 129, 131, 132, 134, 135, 136, 137, 139, 140, 142
Offset: 1

Views

Author

Amiram Eldar, Mar 23 2024

Keywords

Comments

It is unknown whether 222 is a term of this sequence or not (see A371423).

Examples

			12 is a term because when we start with 12 and repeatedly apply the mapping x -> A371418(x), we get the sequence 12, 14, 12, 14, ...
76 is a term because when we start with 76 and repeatedly apply the mapping x -> A371418(x), we get the sequence 76, 70, 72, 65, 42, 48, 62, 48, 62, ...
		

Crossrefs

Similar sequences: A127655, A127660, A127665.

Programs

  • Mathematica
    r[n_] := n/FactorInteger[n][[1, 1]]; f[n_] := r[DivisorSigma[1, n]];
    q[n_] := Module[{m = NestWhileList[f, n, UnsameQ, All][[-1]], k}, k = f[m]; k != m && f[k] == m]; Select[Range[221], q]

A127663 Infinitary aspiring numbers.

Original entry on oeis.org

30, 42, 54, 66, 72, 78, 100, 140, 148, 152, 192, 194, 196, 208, 220, 238, 244, 252, 268, 274, 292, 296, 298, 300, 336, 348, 350, 360, 364, 372, 374, 380, 382, 386, 400, 416, 420, 424, 476, 482, 492, 516, 520, 532, 540, 542, 544, 550, 572, 576, 578, 586, 592
Offset: 1

Views

Author

Ant King, Jan 26 2007

Keywords

Comments

Numbers whose infinitary aliquot sequences end in an infinitary perfect number, but are not infinitary perfect numbers themselves.

Examples

			a(5) = 72 because the fifth non-infinitary perfect number whose infinitary aliquot sequence ends in an infinitary perfect number is 72.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];InfinitaryPerfectNumberQ[0]=False;InfinitaryPerfectNumberQ[k_Integer] :=If[properinfinitarydivisorsum[k]==k,True,False];Select[Range[750],InfinitaryPerfectNumberQ[Last[iTrajectory[ # ]]] && !InfinitaryPerfectNumberQ[ # ]&]
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; s[n_] := Times @@ f @@@ FactorInteger[n] - n; s[0] = s[1] = 0; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, n != v[[-2]] == v[[-1]] > 0]; Select[Range[839], q]  (* Amiram Eldar, Mar 11 2023 *)

A127664 Infinitary amicable numbers.

Original entry on oeis.org

114, 126, 594, 846, 1140, 1260, 4320, 5940, 7920, 8460, 8640, 10744, 10856, 11760, 12285, 13500, 14595, 17700, 25728, 35712, 43632, 44772, 45888, 49308, 60858, 62100, 62700, 67095, 67158, 71145, 73962, 74784, 79296, 79650, 79750, 83142, 83904, 86400, 88730
Offset: 1

Views

Author

Ant King, Jan 26 2007

Keywords

Examples

			a(5)=1140 because 1140 is the fifth infinitary amicable number.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];InfinitaryAmicableNumberQ[k_]:=If[Nest[properinfinitarydivisorsum,k,2]==k && !properinfinitarydivisorsum[k]==k,True,False];Select[Range[50000],InfinitaryAmicableNumberQ[ # ] &]
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n]; If[k != n && infs[k] == n, AppendTo[s, n]], {n, 2, 10^5}]; s (* Amiram Eldar, Mar 16 2019 *)

Formula

Non-infinitary perfect numbers which satisfy A126168(A126168(n)) = n.

Extensions

More terms from Amiram Eldar, Mar 16 2019
Showing 1-3 of 3 results.