cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A343819 Numbers k such that k and k+1 have the same number of Fermi-Dirac factors (A064547).

Original entry on oeis.org

2, 3, 4, 14, 16, 20, 21, 26, 27, 32, 33, 34, 35, 38, 44, 45, 50, 51, 57, 62, 63, 64, 68, 74, 75, 76, 85, 86, 91, 92, 93, 94, 98, 99, 104, 111, 115, 116, 117, 118, 122, 123, 124, 133, 135, 141, 142, 143, 144, 145, 146, 147, 158, 161, 171, 175, 176, 177, 187, 189
Offset: 1

Views

Author

Amiram Eldar, Apr 30 2021

Keywords

Comments

Since the number of infinitary divisors of k is A037445(k) = 2^A064547(k), this is also the sequence of numbers k such that k and k+1 have the same number of infinitary divisors.

Examples

			2 is a term since A064547(2) = A064547(3) = 1.
		

Crossrefs

Similar sequences: A005237, A006049.
Subsequence of A086263.

Programs

  • Mathematica
    fd[1] = 0; fd[n_] := Plus @@ DigitCount[FactorInteger[n][[;;,2]], 2, 1]; Select[Range[200], fd[#] == fd[# + 1] &]

A324295 Numbers k such that s(k) = s(k+1) where s(k) is the sum of divisors of k that are smaller than sqrt(k) (A070039).

Original entry on oeis.org

2, 3, 4, 186, 318, 434, 473, 582, 730, 978, 1024, 1035, 1245, 1357, 1397, 1506, 1661, 1902, 2085, 2116, 2224, 2329, 2453, 2505, 2506, 2770, 2954, 3144, 3345, 3377, 3624, 3641, 3765, 3790, 3882, 4037, 4172, 4438, 4898, 4938, 4975, 5221, 6126, 6285, 6312, 6356
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2019

Keywords

Examples

			186 is in the sequence since A070039(186) = A070039(187) = 12.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, # &, # < Sqrt[n] &]; seq={}; s1 = 0; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 6500}]; seq

A338452 Numbers k such that k and k+1 have the same total binary weight of their divisors (A093653).

Original entry on oeis.org

3, 4, 7, 20, 31, 57, 94, 98, 118, 122, 127, 201, 213, 218, 230, 242, 243, 244, 334, 384, 393, 423, 429, 481, 565, 603, 633, 694, 704, 729, 766, 844, 921, 1138, 1141, 1221, 1262, 1401, 1533, 1654, 1726, 1761, 1837, 1838, 1862, 1882, 1942, 2162, 2245, 2361, 2362
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2020

Keywords

Comments

Numbers k such that A093653(k) = A093653(k+1).
The Mersenne primes (A000668) are terms since if 2^p - 1 is a prime then A093653(2^p-1) = A093653(2^p) = p+1.

Examples

			3 is a term since A093653(3) = A093653(4) = 3.
		

Crossrefs

A000668 is a subsequence.

Programs

  • Mathematica
    f[n_] := DivisorSum[n, DigitCount[#, 2, 1] &]; s = {}; f1 = f[1]; Do[f2 = f[n]; If[f1 == f2, AppendTo[s, n - 1]]; f1 = f2, {n, 2, 240}]; s

A164522 Numbers k such that sigma_odd(k) = sigma_odd(k+1), where sigma_odd(k) is the sum of the odd divisors of k (A000593).

Original entry on oeis.org

1, 27089, 115289, 233729, 2529090, 2880989, 14059709, 17192909, 17540250, 18693990, 34902630, 54722249, 58517910, 82200689, 83087730, 92991990, 93623250, 93862230, 96578369, 111681990, 112244369, 155120129, 206450369, 269626769, 293182469, 303206310, 324764910
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2019

Keywords

Examples

			27089 is in the sequence since A000593(27089) = A000593(27089 + 1) = 27456.
		

Crossrefs

Programs

  • Magma
    v:=[&+[d:d in Divisors(m)|IsOdd(d)] :m in [1..5000000]]; [k:k in [1..#v-1]| v[k] eq v[k+1]]; // Marius A. Burtea, Aug 12 2019
  • Mathematica
    f[p_, e_] := If[p == 2, 1, (p^(e+1)-1)/(p-1)]; s[1] = 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); s1=0; seq={}; Do[s2 = s[n]; If[s2 == s1, AppendTo[ seq, n-1]]; s1 = s2, {n, 1, 10^6}]; seq

A164557 Numbers k such that s(k) = s(k+1), where s(k) is the sum of divisors d of k such that k/d is odd (A002131).

Original entry on oeis.org

3, 6, 7, 10, 22, 31, 46, 58, 69, 82, 106, 127, 140, 154, 160, 166, 178, 226, 262, 286, 346, 358, 382, 466, 478, 502, 562, 586, 718, 748, 781, 838, 862, 886, 982, 1001, 1018, 1066, 1186, 1282, 1299, 1306, 1318, 1366, 1438, 1486, 1522, 1614, 1618, 1672, 1704, 1822
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2019

Keywords

Examples

			3 is in the sequence since A002131(3) = A002131(3 + 1) = 4.
		

Crossrefs

Programs

  • Magma
    v:=[&+[d:d in Divisors(m)|IsOdd(Floor(m/d))] :m in [1..2000]]; [k:k in [1..#v-1]| v[k] eq v[k+1]]; // Marius A. Burtea, Aug 12 2019
  • Mathematica
    f[p_, e_] := If[p == 2, p^e, (p^(e+1)-1)/(p-1)]; s[1] = 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); s1=0; seq={}; Do[s2 = s[n]; If[s2 == s1, AppendTo[seq, n-1]]; s1 = s2, {n, 1, 2000}]; seq

A348346 Numbers k such that k and k+1 have the same positive sum of noninfinitary divisors (A348271).

Original entry on oeis.org

20150, 52767, 99296, 835515, 1241504, 2199392, 6294015, 11158496, 12770450, 17016416, 19127907, 20128544, 23686748, 24790688, 26580554, 33366015, 34385247, 39687651, 42106976, 44157087, 45466676, 59825349, 60832449, 73780244, 75268775, 81654650, 84696849, 111457213
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

Numbers k such that A348271(k) = A348271(k+1) > 0.
The terms are restricted to have a positive sum of noninfinitary divisors, since there are many consecutive numbers without noninfinitary divisors (these are the terms of A036537).

Examples

			20150 is a term since A348271(20150) = A348271(20151) = 6720.
		

Crossrefs

Subsequence of A162643.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; Select[Range[10^5], (s1 = s[#]) > 0 && s1 == s[# + 1] &]

A333949 Numbers k such that s(k) = s(k+1), where s(k) is the sum of recursive divisors of k (A333926).

Original entry on oeis.org

14, 206, 957, 1334, 1364, 1485, 1634, 2685, 2974, 4136, 4364, 14841, 20145, 24957, 33998, 36566, 42818, 64672, 74918, 79826, 79833, 84134, 86343, 92685, 109864, 111506, 122073, 138237, 147454, 159711, 162602, 166934, 187863, 190773, 193893, 201597, 274533, 288765
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2020

Keywords

Examples

			14 is a term since A333926(14) = A333926(15) = 24.
		

Crossrefs

Cf. A333926.
Analogous sequences: A002961, A064115 (nonunitary), A064125 (unitary), A293183 (bi-unitary), A306985 (infinitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], recDivSum[#] == recDivSum[# + 1] &]

A360358 Numbers k such that A360327(k) = A360327(k+1) > 1.

Original entry on oeis.org

714, 6603, 16115, 18920, 23154, 24530, 39984, 41360, 42789, 51204, 56814, 58190, 59619, 60995, 65229, 66605, 68034, 69410, 73644, 79304, 82059, 84249, 84864, 86240, 94655, 101375, 101694, 103070, 107304, 108680, 121374, 125510, 126125, 126939, 135128, 135354, 137329
Offset: 1

Views

Author

Amiram Eldar, Feb 04 2023

Keywords

Comments

Numbers k such that A360327(k) = A360327(k+1) = 1 are terms of A360357.

Examples

			714 is a term since A360327(714) = A360327(715) = 72 > 1.
		

Crossrefs

Similar sequences: A002961, A064115, A064125, A293183, A306985, A360359.

Programs

  • Mathematica
    f[p_, e_] := If[PrimeQ[PrimePi[p]], (p^(e+1)-1)/(p-1), 1]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; s1 = s[1]; n = 2; c = 0; While[c < 40, s2 = s[n]; If[s1 == s2 > 1, c++; AppendTo[seq, n - 1]]; s1 = s2; n++]; seq
  • PARI
    s(n) = {my(f = factor(n), p = f[,1], e = f[,2]); prod(i = 1, #p, if(isprime(primepi(p[i])), (p[i]^(e[i]+1)-1)/(p[i]-1), 1));}
    lista(nmax) = {my(s1 = s(1), s2); for(n=2, nmax, s2=s(n); if(s2 > 1 && s1 == s2, print1(n-1, ", ")); s1 = s2); }

A360359 Numbers k such that A360331(k) = A360331(k+1).

Original entry on oeis.org

69, 574, 713, 781, 2394, 2506, 5699, 5750, 6499, 6509, 8441, 19250, 26529, 32130, 36549, 38065, 41749, 41929, 43239, 48025, 50301, 53037, 53382, 59178, 59822, 61754, 66906, 67689, 70277, 71198, 81620, 94000, 100775, 119214, 124640, 127442, 134665, 153202, 154908
Offset: 1

Views

Author

Amiram Eldar, Feb 04 2023

Keywords

Examples

			69 is a term since A360331(69) = A360331(70) = 24.
		

Crossrefs

Cf. A360331.
Similar sequences: A002961, A064115, A064125, A293183, A306985, A360358.

Programs

  • Mathematica
    f[p_, e_] := If[PrimeQ[PrimePi[p]], 1, (p^(e+1)-1)/(p-1)]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; s1 = s[1]; n = 2; c = 0; While[c < 40, s2 = s[n]; If[s1 == s2, c++; AppendTo[seq, n - 1]]; s1 = s2; n++]; seq
  • PARI
    s(n) = {my(f = factor(n), p = f[,1], e = f[,2]); prod(i = 1, #p, if(isprime(primepi(p[i])), 1, (p[i]^(e[i]+1)-1)/(p[i]-1)));}
    lista(nmax) = {my(s1 = s(1), s2); for(n=2, nmax, s2=s(n); if(s1 == s2, print1(n-1, ", ")); s1 = s2); }

A372693 Numbers k such that A372692(k) = A372692(k+1) > 1.

Original entry on oeis.org

7380, 18755, 24804, 25631, 26299, 27467, 32799, 44891, 49196, 49725, 50940, 53603, 59652, 64386, 71027, 79739, 85788, 89300, 94275, 103212, 105056, 105875, 124992, 129348, 132011, 138060, 141899, 147100, 149435, 155484, 158147, 164196, 170324, 175571, 181620, 184283
Offset: 1

Views

Author

Amiram Eldar, May 10 2024

Keywords

Comments

The numbers k such that A372692(k) = A372692(k+1) = 1 are in A372690.

Crossrefs

Subsequence of A068781.
A372694 is a subsequence.
Similar sequences: Cf. A002961, A064125, A293183, A306985, A343819, A348346.

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@ IntegerDigits[e, 2], ?(# == 0 &)])); s[1] = 1; s[n] := s[n] = Times @@ (Flatten@ (f @@@ FactorInteger[n]) + 1);
    Select[Range[10^5], (s1 = s[#]) > 1 && s1 == s[# + 1] &]
  • PARI
    s(n) = {my(f = factor(n), k); prod(i = 1, #f~, k = apply(x -> 1 - x, binary(f[i, 2])); prod(j = 1, #k, if(k[j], f[i, 1]^(2^(#k-j)) + 1, 1)));}
    lista(kmax) = {my(s1 = s(1), s2); for(k = 2, kmax, s2 = s(k); if(s1 > 1 && s1 == s2, print1(k - 1, ", ")); s1 = s2);}
Showing 1-10 of 23 results. Next