cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A348345 Number k such that k and k+1 have the same positive number of noninfinitary divisors (A348341).

Original entry on oeis.org

44, 75, 98, 116, 147, 171, 242, 243, 244, 332, 387, 507, 548, 603, 604, 724, 735, 819, 844, 908, 931, 963, 1035, 1075, 1083, 1196, 1251, 1274, 1275, 1324, 1412, 1449, 1467, 1556, 1587, 1665, 1675, 1772, 1924, 1925, 1952, 1988, 2324, 2331, 2511, 2523, 2524, 2540
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

First differs from A049103 at n=17.
Numbers k such that A348341(k) = A348341(k+1) > 0.
The terms are restricted to have a positive number of noninfinitary divisors, since there are many consecutive numbers without noninfinitary divisors (these are the terms of A036537).

Examples

			44 is a term since A348341(44) = A348341(45) = 2 > 0.
		

Crossrefs

Subsequence of A162643.
Similar sequences: A005237, A006049, A343819, A344312, A344313, A344314.

Programs

  • Mathematica
    nid[1] = 0; nid[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]]; Select[Range[2500],(nid1 = nid[#]) > 0 && nid1 == nid[# + 1] &]
  • PARI
    A348341(n) = (numdiv(n)-factorback(apply(a -> 2^hammingweight(a), factorint(n)[, 2])));
    isA348345(n) = { my(u=A348341(n)); (u>0&&(A348341(1+n)==u)); }; \\ Antti Karttunen, Oct 13 2021

A372693 Numbers k such that A372692(k) = A372692(k+1) > 1.

Original entry on oeis.org

7380, 18755, 24804, 25631, 26299, 27467, 32799, 44891, 49196, 49725, 50940, 53603, 59652, 64386, 71027, 79739, 85788, 89300, 94275, 103212, 105056, 105875, 124992, 129348, 132011, 138060, 141899, 147100, 149435, 155484, 158147, 164196, 170324, 175571, 181620, 184283
Offset: 1

Views

Author

Amiram Eldar, May 10 2024

Keywords

Comments

The numbers k such that A372692(k) = A372692(k+1) = 1 are in A372690.

Crossrefs

Subsequence of A068781.
A372694 is a subsequence.
Similar sequences: Cf. A002961, A064125, A293183, A306985, A343819, A348346.

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@ IntegerDigits[e, 2], ?(# == 0 &)])); s[1] = 1; s[n] := s[n] = Times @@ (Flatten@ (f @@@ FactorInteger[n]) + 1);
    Select[Range[10^5], (s1 = s[#]) > 1 && s1 == s[# + 1] &]
  • PARI
    s(n) = {my(f = factor(n), k); prod(i = 1, #f~, k = apply(x -> 1 - x, binary(f[i, 2])); prod(j = 1, #k, if(k[j], f[i, 1]^(2^(#k-j)) + 1, 1)));}
    lista(kmax) = {my(s1 = s(1), s2); for(k = 2, kmax, s2 = s(k); if(s1 > 1 && s1 == s2, print1(k - 1, ", ")); s1 = s2);}

A348628 Numbers k such that k and k+1 have the same sum of nonexponential divisors (A160135).

Original entry on oeis.org

1, 2, 3, 4, 15, 44, 674, 478899
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

Numbers k such that A160135(k) = A160135(k+1).
a(9) > 1.6 * 10^11, if it exists.

Examples

			2 is a term since A160135(2) = A160135(3) = 1.
15 is a term since A160135(15) = A160135(16) = 9.
		

Crossrefs

Cf. A160135.
Similar sequences: A002961, A064115, A064125, A293183, A306985, A348346.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[1] = 1; s[n_] := DivisorSigma[1, n] - esigma[n]; Select[Range[500000], s[#] == s[# + 1] &]
Showing 1-3 of 3 results.